全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

CPCM/液冷复合电池散热系统均匀性研究
Study on the Uniformity of the Cooling System of the CPCM/Liquid-Cooled Composite Battery

DOI: 10.12677/MOS.2023.122151, PP. 1623-1636

Keywords: 电池热管理,温度均匀性,复合散热,复合相变材料;Battery Thermal Management, Temperature Uniformity, Composite Heat Dissipation, Composite Phase Change Material

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了缓解CPCM散热系统复合液冷模块后导致温度均匀性变差的问题,构建一种CPCM/液冷复合的电池散热系统仿真模型,将CPCM模块划分为蓄热区和导热区,填充不同EG分数的CPCM,同时研究了分区处理对CPCM潜热回收的效率及均匀性影响。仿真结果表明,引入液冷模块后,能够很好的控制电池最高温度,但电池温差明显增大,主要表现在单体电池径向温差较大;通过增大CPCM模块划分距离d调整分区位置可以在保证电池散热要求的同时改善温度均匀性,但划分距离的增大不利于潜热回收的效率和均匀性;通过提高导热区CPCM的EG填充分数,可以提高潜热回收的效率和均匀性,但同时牺牲了大量的相变潜热。
In order to alleviate the problem of poor temperature uniformity caused by the combination of liq-uid cooling and CPCM heat dissipation system, a CPCM/liquid cooling composite battery heat dissi-pation system simulation model is constructed. The CPCM module is divided into heat storage zone and heat conduction zone, and filled with CPCM with different EG fractions. At the same time, the ef-fect of zoning treatment on the efficiency and uniformity of CPCM latent heat recovery is studied. The simulation results show that the maximum temperature of the battery can be well controlled after the introduction of the liquid cooling module, but the temperature difference of the battery is significantly increased, mainly in the large radial temperature difference of the single cell; Adjust-ing the partition position by increasing the partition distance d of the CPCM module can improve the temperature uniformity while ensuring the heat dissipation requirements of the battery, but the increase of the partition distance is not conducive to the efficiency and uniformity of the latent heat recovery; The efficiency and uniformity of latent heat recovery can be improved by increasing the EG filling fraction of CPCM in the heat conduction zone, but a large amount of latent heat of phase change is sacrificed at the same time.

References

[1]  Jouhara, H.K., Hordehgah, N., Serey, N., et al. (2019) Applications and Thermal Management of Rechargeable Batteries for Industrial Applications. Energy, 170, 849-861.
https://doi.org/10.1016/j.energy.2018.12.218
[2]  Ramadass, P., Haran, B. and White, R. (2002) Capacity Fade of Sony 18650 Cells Cycled at Elevated Temperatures: Part I. Cycling Performance. Power Sources, 112, 606-613.
https://doi.org/10.1016/S0378-7753(02)00474-3
[3]  Wang, Q.S., Ping, P., Zhao, X.J., Chu, G.Q., Sun, J.H. and Chen, C.H. (2012) Thermal Runaway Caused Fire and Explosion of Lithium Ion Battery. Journal of Power Sources, 208, 210-224.
https://doi.org/10.1016/j.jpowsour.2012.02.038
[4]  Ling, Z.Y., Zhang, Z.G., Shi, G.G., et al. (2013) Review on Thermal Management Systems Using Phase Change Materials for Electronic Components, Li-Ion Batteries and Photo-voltaic Modules. Renewable and Sustainable Energy Reviews, 31, 427-438.
https://doi.org/10.1016/j.rser.2013.12.017
[5]  Azizi, Y. and Sadrameli, S.M. (2016) Thermal Management of a LiFePO4 Battery pack at High Temperature Environment Using a Composite of Phase Change Materials and Aluminum Wire Mesh Plates. Energy Conversion and Management, 128, 294-302.
https://doi.org/10.1016/j.enconman.2016.09.081
[6]  Zhang, Z.G. and Fang, X.M. (2006) Study on Paraf-fin/Expanded Graphite Composite Phase Change Thermal Energy Storage Material. Energy Conversion and Management, 47, 303-310.
https://doi.org/10.1016/j.enconman.2005.03.004
[7]  Akula, R. and Balaji, C. (2022) Thermal Man-agement of 18650 Li-Ion Battery Using Novel Fins-PCM-EG Composite Heat Sinks. Applied Energy, 316, Article ID: 119048.
https://doi.org/10.1016/j.apenergy.2022.119048
[8]  Jiang, G.W., Huang, J.H., Fu, Y.S., Cao, M. and Liu, M.C. (2016) Thermal Optimization of Composite Phase Change Material/Expanded Graphite for Li-Ion Battery Thermal Management. Applied Thermal Engineering, 108, 1119-1125.
https://doi.org/10.1016/j.applthermaleng.2016.07.197
[9]  Kizilel, R., Lateef, A., Sabbah, R., et al. (2008) Passive Control of Temperature Excursion and Uniformity in High- Energy Li-Ion Battery Packs at High Current and Ambient Temperature. Journal of Power Sources, 183, 370-375.
https://doi.org/10.1016/j.jpowsour.2008.04.050
[10]  Cao, J.H., Ling, Z.Y., Fang, X.M. and Zhang, Z.G. (2020) Delayed Liquid Cooling Strategy with Phase Change Material to Achieve High Temperature Uniformity of Li-Ion Battery under High-Rate Discharge. Journal of Power Sources, 450, Article ID: 227673.
https://doi.org/10.1016/j.jpowsour.2019.227673
[11]  Song, L.M., Zhang, H.Y. and Yang, C. (2019) Thermal Analysis of Conjugated Cooling Configurations Using Phase Change Material and Liquid Cooling Techniques for a Bat-tery Module. International Journal of Heat and Mass Transfer, 133, 827-841.
https://doi.org/10.1016/j.ijheatmasstransfer.2018.12.157
[12]  Zhang, F.R., Zhai, L., Zhang, L., et al. (2022) A Novel Hybrid Battery Thermal Management System with Fins Added on and between Liquid Cooling Channels in Composite Phase Change Materials. Applied Thermal Engineering, 207, Article ID: 118198.
https://doi.org/10.1016/j.applthermaleng.2022.118198
[13]  Ling, Z.Y., Chen, J.J., Xu, T., et al. (2015) Thermal Conductivity of an Organic Phase Change Material/Expanded Graphite Composite across the Phase Change Temperature Range and a Novel Thermal Conductivity Model. Energy Conversion and Management, 102, 202-208.
https://doi.org/10.1016/j.enconman.2014.11.040
[14]  Bernardi, D., Pawlikowski, E. and Newman, J. (1984) A General Energy Balance for Battery Systems. Journal of the Electrochemical Society, 132, 5-12.
https://doi.org/10.1149/1.2113792
[15]  刘业凤, 郑鹏飞, 言锦嘉, 等. 基于复合相变材料的电池组散热性能分析[J]. 电源技术, 2019, 43(11): 1792-1795.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133