全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

THzViSAR极坐标格式算法的几何失真校正
Geometric Distortion Correction for THzViSAR Polar Format Algorithm

DOI: 10.12677/MOS.2023.122150, PP. 1612-1622

Keywords: 极坐标格式算法,太赫兹视频SAR,线性相位误差,图像域重采样,几何失真校正;PFA, THzViSAR, LPE, Image Domian Resampling, Geometric Distortion Correction

Full-Text   Cite this paper   Add to My Lib

Abstract:

极坐标格式算法(PFA)基于平面波前假设对差分距离进行二阶近似,导致线性和二次相位误差的存在,并分别导致几何失真和图像散焦。太赫兹视频SAR (THzViSAR)的特点在于有效场景范围大、成像区域小,因此可以忽略二次相位误差(QPE),而线性相位误差(LPE)只与成像几何有关,不可忽略。考虑到不同帧坐标下的图像旋转,本文对偏移后的目标位置进行了公式推导,并且采用图像域重采样的方法进行几何失真校正,同时实现图像旋转。最后通过仿真数据处理验证了本文所述的校正方法能够有效地改善PFA图像的失真及旋转情况。
The polar format algorithm (PFA) makes a second-order approximation of the differential range based on the planar wavefront assumption. This leads to the existence of linear and quadratic phase errors, respectively resulting in geometric distortion and defocusing. Terahertz video synthetic ap-erture radar (THzViSAR) is characterized by the small region and the large permissible region of Quadratic Phase Error (QPE), so QPE can be ignored. However, Linear Phase Error (LPE) is only re-lated to imaging geometry and cannot be ignored. Considering the image rotation in different frame coordinates, this paper deduces the formula for the offset position, and adopts the image domain resampling for geometric distortion correction and rotation. Finally, simulation experiments verify that the correction method can effectively improve the distortion and rotation of PFA images.

References

[1]  左峰. 视频合成孔径雷达成像算法研究[D]: [博士学位论文]. 成都: 电子科技大学, 2019.
[2]  胡睿智. 视频合成孔径雷达成像理论与关键技术研究[D]: [博士学位论文]. 成都: 电子科技大学, 2018.
[3]  向天舜. 星载合成孔径雷达成像关键技术研究[D]: [博士学位论文]. 南京: 南京航空航天大学, 2020.
https://doi.org/10.27239/d.cnki.gnhhu.2020.002386
[4]  Moreira, A., Prats-Iraola, P., et al. (2013) A Tutorial on Synthetic Aperture Radar. IEEE Geoscience and Remote Sensing Magazine, 1, 6-43.
https://doi.org/10.1109/MGRS.2013.2248301
[5]  贾刚, 汪力, 张希成. 太赫兹波(TeraHertz)科学与技术[J]. 中国科学基金, 2002, 16(4): 200-203.
[6]  张存林, 牧凯军. 太赫兹波谱与成像[J]. 激光与光电子学进展, 2010, 47(2): 1-14.
[7]  许景周, 张希成. 太赫兹科学技术和应用[M]. 北京: 北京大学出版社, 2007.
[8]  张存林. 太赫兹感测与成像[M]. 北京: 国防工业出版社, 2008.
[9]  冯伟, 张戎, 曹俊诚. 太赫兹雷达技术研究进展[J]. 物理, 2013(12): 846-854.
[10]  梁美彦, 邓朝, 张存林. 太赫兹雷达成像技术[J]. 太赫兹科学与电子信息学报, 2013, 11(2): 189-198.
[11]  金林, 吴福伟, 杨予昊, 等. 机载视频合成孔径雷达成像技术研究[J]. 微波学报, 2020, 36(1): 45-48.
[12]  Gorham, L.A. and Moore, L.J. (2010) SAR Image Formation Toolbox for MATLAB. In: Zelnio, E.G. and Garber, F.D., Eds., Algorithms for Synthetic Aperture Radar Imagery XVII, Vol. 7699, SPIE, Bellingham, 223-263.
https://doi.org/10.1117/12.855375
[13]  肖靖. 聚束SAR极坐标格式算法研究[D]: [硕士学位论文]. 南京: 南京航空航天大学, 2004.
[14]  Yegulalp, A.F. (1999) Fast Backprojection Algorithm for Synthetic Aperture Radar. Proceedings of the 1999 IEEE Radar Conference. Radar into the Next Millennium, Waltham, 22-22 April 1999, 60-65.
[15]  Basu, S. and Bresler, Y. (2000) O(N/sup 2/log/sub 2/N) Filtered Backprojection Reconstruction Algorithm for Tomography. IEEE Transactions on Image Processing, 9, 1760-1773.
https://doi.org/10.1109/83.869187
[16]  Ulander, L.M.H., Hellsten, H. and Stenstrom, G. (2003) Synthet-ic-Aperture Radar Processing Using Fast Factorized Back-Projection. IEEE Transactions on Aerospace and Electronic Systems, 39, 760-776.
https://doi.org/10.1109/TAES.2003.1238734
[17]  Wahl, D.E., Yocky, D.A. and Jakowatz Jr., C.V. (2008) An Im-plementation of a Fast Backprojection Image Formation Algorithm for Spotlight-Mode SAR. In: Zelnio, E.G. and Garber, F.D., Eds., Algorithms for Synthetic Aperture Radar Imagery XV, Vol. 6970, SPIE, Bellingham, 95-105.
https://doi.org/10.1117/12.779401
[18]  Yang, Z.-M., Sun, Z.-M. and Xing, M.-D. (2013) A New Fast Back-Projection Algorithm Using Polar Format Algorithm. Conference Proceedings of 2013 Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), Tsukuba, 23-27 September 2013, 373-376.
[19]  Zhang, L., Li, H.-L., Qiao, Z.-J. and Xu, Z.-W. (2014) A Fast BP Algorithm with Wavenumber Spectrum Fusion for High-Resolution Spotlight SAR Imaging. IEEE Geoscience and Remote Sensing Letters, 11, 1460-1464.
https://doi.org/10.1109/LGRS.2013.2295326
[20]  Yang, Z., Xing, M., Zhang, L. and Zheng, B. (2015) A Coordi-nate-Transform Based Ffbp Algorithm for High-Resolution Spotlight SAR Imaging. Science China Information Sciences, 58, 1-11.
https://doi.org/10.1007/s11432-014-5262-x
[21]  Gorham, L.A., Majumder, U.K., Buxa, P., Backues, M.J. and Lindgren, A.C. (2006) Implementation and Analysis of a Fast Backprojection Algorithm. In: Zelnio, E.G. and Garber, F.D. Eds., Algorithms for Synthetic Aperture Radar Imagery XIII, Vol. 6237, SPIE, Bellingham.
https://doi.org/10.1117/12.674024
[22]  董祺, 孙光才, 杨泽民, 等. 直角坐标多级后投影聚束SAR成像算法[J]. 电子与信息学报, 2016, 38(6): 1482-1488.
[23]  Lin, Z.-B. (1988) Wideband Ambiguity Function of Broadband Signals. The Journal of the Acoustical Society of America, 83, 2108-2116.
https://doi.org/10.1121/1.396391

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133