|
基于超声振动辅助车削的建模与仿真研究
|
Abstract:
超声振动辅助车削相对于传统车削加工有提高车削效率、提高刀具使用寿命、提高材料加工表面完整性等优点。本文分析了车削加工中的振动机理,阐述了超声振动对传统车削加工的影响,同时以钛合金(TC4)为研究对象,基于振动学理论,建立了一种表征传统车削振动系统的解析模型,并使用ABAQUS软件建立了二维车削有限元切削仿真模型,开展了传统车削与超声振动辅助车削两种工艺的TC4切削仿真模拟。仿真结果表明,当超声振幅在4 μm~12 μm内时,超声振动辅助车削加工相较于传统车削加工,刀具受到的径向力下降了11.4%~20%,TC4加工表面最大压应力下降了7.8%~19.4%,且加工表面压应力和径向力均随着超声振幅的提高而下降。
Compared with traditional turning, ultrasonic vibration assisted turning has the advantages of im-proving turning efficiency, improving tool life and improving surface integrity of material pro-cessing. In this paper, the vibration mechanism in turning is analyzed, and the influence of ultra-sonic vibration on traditional turning is expounded. At the same time, taking titanium alloy (TC4) as the research object, an analytical model characterizing the vibration system of traditional turning is established based on the theory of vibration. The two-dimensional turning finite element cutting simulation model is established by using ABAQUS software, and the TC4 cutting simulation of tradi-tional turning and ultrasonic vibration assisted turning is carried out. The simulation results show that when the ultrasonic amplitude is within 4 μm~12 μm, compared with the traditional turning, the radial force of the tool is reduced by 11.4%~20%, and the maximum compressive stress of the TC4 machined surface is reduced by 7.8%~19.4%. The surface compressive stress and radial force decrease with the increase of ultrasonic amplitude.
[1] | 于永泗. 机械工程材料[M]. 大连: 大连理工大学出版社, 2012. |
[2] | 易俊杰. 钛合金高速铣削力试验与有限元数值分析[D]: [硕士学位论文]. 南京: 南京航空航天大学, 2009. |
[3] | 卢秉恒. 机械制造技术基础第四版[M]. 北京: 机械工业出版社, 2017. |
[4] | 张卫华, 刘争, 张亮. 高效加工TC4钛合金的铣削过程数值模拟[J]. 工具技术, 2019, 53(2): 104-107. |
[5] | 庞宇, 马原, 许超, 冯平法. 钛合金超声振动车削数值模拟[J]. 金刚石与磨料磨具工程, 2019, 39(2): 83-88. |
[6] | 胡智特, 秦娜, 刘凡. 超声振动车削TC4钛合金的切削性能研究[J]. 机械设计与制造, 2018(2): 164-166+170. |
[7] | 冷超群. 钛合金超声振动车削有限元仿真研究[D]: [硕士学位论文]. 南昌: 江西农业大学, 2013. |
[8] | 路冬, 黄红福, 吴勇波, 冷超群. 基于ALE方法的钛合金超声振动车削仿真[J]. 振动与冲击, 2013, 32(15): 59-62+70. |
[9] | Zhang, C., Zhang, J. and Feng, P. (2013) Mathematical Model for Cutting Force in Rotary Ultrasonic Face Milling of Brittle Materials. International Journal of Advanced Manufacturing Technology, 69, 161-170.
https://doi.org/10.1007/s00170-013-5004-z |
[10] | Jiao, L., Wang, X., Qian, Y., et al. (2015) Modelling and Analysis for the Temperature Field of the Machined Surface in the Face Milling of Aluminium Alloy. International Journal of Advanced Manufacturing Technology, 81, 1797-1808.
https://doi.org/10.1007/s00170-015-7231-y |
[11] | Overcash, J.L. and Cuttino, J.F. (2009) In-Process Modeling of Dy-namic Tool-Tip Temperatures of a Tunable Vibration Turning Device Operating at Ultrasonic Frequencies. Precision Engineer-ing, 33, 505-515.
https://doi.org/10.1016/j.precisioneng.2009.02.001 |
[12] | 徐芝纶. 弹性力学[M]. 第5版. 北京: 高等教育出版社, 2016. |
[13] | 张丽芳, 翁国华. 材料力学[M]. 上海: 上海科学技术出版社, 2015. |