|
低照度图像增强的自适应同态滤波算法研究
|
Abstract:
针对传统同态滤波计算复杂、实时性差、参数多且最优参数获取困难等问题,本文提出一种基于自适应同态滤波的低照度彩色图像增强算法。为避免增强图像颜色失真,基于HSV色彩空间,仅对V分量进行增强处理;结合离散余弦变换(Discrete Cosine Transform, DCT)及指对变换实现图像空间域与频率域的相互转换;基于sigmoid函数构造单参数同态滤波函数,以峰值信噪比(PSNR)和结构相似性(SSIM)为指标,建立一种图像评价模型,并采取等步长间隔法实现最优参数的自适应选取;选取信息熵、平均梯度和对比度对道路及建筑图像进行定量评价,实验结果表明,本文算法可有效校正低照度图像亮度不均问题,提高了图像对比度,图像细节信息得到了进一步丰富。
Aiming at the problems of traditional homomorphic filtering, such as complex computation, poor real-time performance, many parameters and difficulty in obtaining optimal parameters, this paper proposes a low illumination color image enhancement algorithm based on adaptive homomorphic filtering. In order to avoid color distortion of enhanced image, only V component is enhanced based on HSV color space. Combined with discrete cosine transform, exponential transformation and loga-rithmic transformation, the interconversion of image space domain and frequency domain is realized. A single parameter homomorphic filtering function was constructed based on sigmoid function. Taking peak signal to noise ratio (PSNR) and structural similarity (SSIM) as indexes, an image evaluation model was established, and the equal step interval method was adopted to realize the adaptive selection of optimal parameters. Information entropy, average gradient and contrast were selected for quantitative evaluation of road and building images. The experimental results show that the proposed algorithm can effectively correct the uneven brightness of low illuminance images, improve the image contrast and enrich the image details.
[1] | 武亚红. 不均匀低照度低质图像增强算法研究[D]: [博士学位论文]. 南京: 南京邮电大学, 2021. |
[2] | 郭永坤, 朱彦陈, 刘莉萍, 黄强. 空频域图像增强方法研究综述[J]. 计算机工程与应用, 2022, 58(11): 23-32. |
[3] | Oppen-heim, A., Schafer, R. and Stockham, T. (1968) Nonlinear Filtering of Multiplied and Convolved Signals. IEEE Transac-tions on Audio and Electroacoustics, 16, 437-466. https://doi.org/10.1109/TAU.1968.1161990 |
[4] | Wu, H. and Tan, Z. (2020) An Image Dehazing Algorithm Based on Single-Scale Retinex and Homomorphic Filtering. In: Liang, Q., Wang, W., Liu, X., Na, Z., Jia, M. and Zhang, B., Eds., Communications, Signal Processing, and Systems. CSPS 2019. Lecture Notes in Electrical Engineering, Vol. 571, Springer, Singapore, 1482-1493.
https://doi.org/10.1007/978-981-13-9409-6_178 |
[5] | 杨亚绒, 李恒, 赵磊, 王海瑞. 改进的同态滤波与多尺度融合的水下图像增强[J]. 机械科学与技术, 2022, 41(8): 1231-1239. |
[6] | 刘佳敏, 何宁. 基于改进同态滤波的低对比度图像增强[J]. 计算机应用与软件, 2020, 37(3): 220-224. |
[7] | 刘源, 夏春蕾. 基于改进同态滤波的带钢缺陷亮度不均匀校正算法[J]. 电子测量技术, 2021, 44(8): 110-114. |
[8] | 张亚飞, 谢明鸿. 基于分块DCT同态滤波的彩色图像增强算法[J]. 计算机工程与设计, 2013, 34(5): 1752-1756. |
[9] | 张珂, 廖育荣, 罗亚伦, 程凌峰. 基于改进同态滤波的红外图像增强算法[J]. 激光与光电子学进展: 1-8.
http://kns.cnki.net/kcms/detail/31.1690.TN.20220713.1702.475.html, 2022-07-15. |
[10] | Fan, Y., Zhang, L., Guo, H., et al. (2020) Image Processing for Laser Imaging Using Adaptive Homomorphic Filtering and Total Variation. Photonics, 7, Article No. 30. https://doi.org/10.3390/photonics7020030 |
[11] | 焦竹青, 徐保国. HSV变换和同态滤波的彩色图像光照补偿[J]. 计算机工程与应用, 2010, 46(30): 142-144. |
[12] | 李成龙. 基于照射/反射模型的视觉感知增、强算法研究及应用[D]: [硕士学位论文]. 北京: 北京交通大学, 2012. |
[13] | 冯相辉. 一种改进的同态滤波图像增强算法[J]. 重庆邮电大学学报(自然科学版), 2020, 32(1): 138-145. |
[14] | 王秋云. 一种改进的照度不均图像增强方法[J]. 自动化与仪器仪表, 2017(2): 33-35. |
[15] | 周景超, 戴汝为, 肖柏华. 图像质量评价研究综述[J]. 计算机科学, 2008, 35(7): 1-4, 8. |
[16] | 吕绪良, 文刘强, 荣先辉, 等. 基于小波变换的红外图像模糊与同态增强[J]. 解放军理工大学学报(自然科学版), 2013, 14(2): 158-162. |