全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

认知控制的脑机制及衰老对其脑机制的影响
Brain Mechanism of Cognitive Control and the Effects of Aging

DOI: 10.12677/AP.2023.133133, PP. 1109-1117

Keywords: 认知控制,脑机制,老年人
Cognitive Control
, Neural Mechanism, Older Adults

Full-Text   Cite this paper   Add to My Lib

Abstract:

认知控制也叫执行功能,是指选择目标并控制自身的思想和行动以达到该目标的心理过程,其相应的行为被叫作目标导向行为。这是一个复合的过程,涉及到个体的决策、工作记忆、自上而下的注意,以及元认知。认知控制对于老年人来说尤其重要,是保证老年人日常生活正常运作的重要基础,但认知控制功能总是随着衰老不断减退,这十分影响老年人的心理健康与生活质量,因此,关注认知控制的老化,并探讨导致该功能衰退的神经基础尤为重要。本文回顾了近几十年的研究,在脑激活水平和脑网络水平上综述了认知控制功能在神经水平上的基础,并总结了衰老对脑神经的影响,阐述了支撑个体认知控制功能的关键脑区与脑连接,为后续的干预研究提供了锚点。
Cognitive control, also known as executive function, refers to the psychological process of selecting a goal and controlling one’s own thoughts and actions to achieve the goal. The corresponding behavior is called goal-directed behavior. This is a compound process involving individual decision making, working memory, top-down attention, and meta-cognition. Cognitive control is especially important for the elderly, which is an important basis for ensuring the normal functioning of daily life. However, cognitive control function always decreases with aging, which greatly affects the mental health and quality of life of the elderly. Therefore, it is particularly important to pay attention to the aging of cognitive control and explore the neural basis leading to this decline. This article retrospects the research in recent decades and reviews the basis of cognitive control function at the neural level at the level of brain activation and brain network, also summarizes the impact of aging on brain nerves, and expounds the key brain regions and brain connections that support individual cognitive control function, providing an anchor for subsequent intervention research.

References

[1]  Anticevic, A., Cole, M. W., Murray, J. D., Corlett, P. R., Wang, X.-J., & Krystal, J. H. (2012). The Role of Default Network Deactivation in Cognition and Disease. Trends in Cognitive Sciences, 16, 584-592.
https://doi.org/10.1016/j.tics.2012.10.008
[2]  Archer, J. A., Lee, A., Qiu, A., & Chen, S.-H. A. (2016). A Comprehensive Analysis of Connectivity and Aging over the Adult Life Span. Brain Connectivity, 6, 169-185.
https://doi.org/10.1089/brain.2015.0345
[3]  Baltes, P. B., & Lindenberger, U. (1997). Emergence of a Powerful Connection between Sensory and Cognitive Functions across the Adult Life Span: A New Window to the Study of Cognitive Aging? Psychology and Aging, 12, 12.
https://doi.org/10.1037/0882-7974.12.1.12
[4]  Betzel, R. F., Byrge, L., He, Y., Go?i, J., Zuo, X.-N., & Sporns, O. (2014). Changes in Structural and Functional Connectivity among Resting-State Networks across the Human Lifespan. Neuroimage, 102, 345-357.
https://doi.org/10.1016/j.neuroimage.2014.07.067
[5]  Biswal, B. B., Mennes, M., Zuo, X.-N., Gohel, S., Kelly, C., Smith, S. M., & Colcombe, S. (2010). Toward Discovery Science of Human Brain Function. Proceedings of the National Academy of Sciences, 107, 4734-4739.
https://doi.org/10.1073/pnas.0911855107
[6]  Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D. (2001). Conflict Monitoring and Cognitive Control. Psychological Review, 108, 624.
https://doi.org/10.1037/0033-295X.108.3.624
[7]  Brass, M., Ullsperger, M., Knoesche, T. R., Cramon, D. Y. V., & Phillips, N. A. (2005). Who Comes First? The Role of the Prefrontal and Parietal Cortex in Cognitive Control. Journal of Cognitive Neuroscience, 17, 1367-1375.
https://doi.org/10.1162/0898929054985400
[8]  Braver, T. S. (2012). The Variable Nature of Cognitive Control: A Dual Mechanisms Framework. Trends in Cognitive Sciences, 16, 106-113.
https://doi.org/10.1016/j.tics.2011.12.010
[9]  Cabeza, R. (2002). Hemispheric Asymmetry Reduction in Older Adults: The HAROLD Model. Psychology and Aging, 17, 85.
https://doi.org/10.1037/0882-7974.17.1.85
[10]  Chand, G. B., & Dhamala, M. (2016). Interactions among the Brain Default-Mode, Salience, and Central-Executive Networks During Perceptual Decision-Making of Moving Dots. Brain Connect, 6, 249-254.
https://doi.org/10.1089/brain.2015.0379
[11]  Chen, A. C., Oathes, D. J., Chang, C., Bradley, T., Zhou, Z.-W., Williams, L. M., & Etkin, A. (2013). Causal Interactions between Fronto-Parietal Central Executive and Default-Mode Networks in Humans. Proceedings of the National Academy of Sciences, 110, 19944-19949.
https://doi.org/10.1073/pnas.1311772110
[12]  Cohen, J. R., Gallen, C. L., Jacobs, E. G., Lee, T. G., & D'Esposito, M. (2014). Quantifying the Reconfiguration of Intrinsic Networks during Working Memory. PLOS ONE, 9, e106636.
https://doi.org/10.1371/journal.pone.0106636
[13]  Corbetta, M., & Shulman, G. L. (2002). Control of Goal-Directed and Stimulus-Driven Attention in the Brain. Nature Reviews Neuroscience, 3, 201-215.
https://doi.org/10.1038/nrn755
[14]  Damoiseaux, J. S. (2017). Effects of Aging on Functional and Structural Brain Connectivity. Neuroimage, 160, 32-40.
https://doi.org/10.1016/j.neuroimage.2017.01.077
[15]  DiGirolamo, G. J., Kramer, A. F., Barad, V., Cepeda, N. J., Weissman, D. H., Milham, M. P., & Webb, A. (2001). General and Task-Specific Frontal Lobe Recruitment in Older Adults during Executive Processes: A fMRI Investigation of Task-Switch- ing. Neuroreport, 12, 2065-2071.
https://doi.org/10.1097/00001756-200107030-00054
[16]  Dosenbach, N. U., Fair, D. A., Cohen, A. L., Schlaggar, B. L., & Petersen, S. E. (2008). A Dual-Networks Architecture of Top-Down Control. Trends in Cognitive Sciences, 12, 99-105.
https://doi.org/10.1016/j.tics.2008.01.001
[17]  Douw, L., Wakeman, D. G., Tanaka, N., Liu, H., & Stuf-flebeam, S. M. (2016). State-Dependent Variability of Dynamic Functional Connectivity between Frontoparietal and Default Networks Relates to Cognitive Flexibility. Neuroscience, 339, 12-21.
https://doi.org/10.1016/j.neuroscience.2016.09.034
[18]  Dubreuil-Vall, L., Chau, P., Ruffini, G., Widge, A. S., & Camprodon, J. A. (2019). tDCS to the Left DLPFC Modulates Cognitive and Physiological Correlates of Executive Function in a State-Dependent Manner. Brain Stimulation, 12, 1456- 1463.
https://doi.org/10.1016/j.brs.2019.06.006
[19]  Cappell, K. A., Gmeindl, L., & Reuter-Lorenz, P. A. (2010). Age Differences in Prefontal Recruitment during Verbal Working Memory Maintenance Depend on Memory Load. Cortex, 46, 462-473.
https://doi.org/10.1016/j.cortex.2009.11.009
[20]  Esterman, M., Chiu, Y.-C., Tamber-Rosenau, B. J., & Yantis, S. (2009). Decoding Cognitive Control in Human Parietal Cortex. Proceedings of the National Academy of Sciences, 106, 17974-17979.
https://doi.org/10.1073/pnas.0903593106
[21]  Farras-Permanyer, L., Mancho-Fora, N., Mon-talà-Flaquer, M., Bartrés-Faz, D., Vaqué-Alcázar, L., Peró-Cebollero, M., & Guàrdia-Olmos, J. (2019). Age-Related Changes in Resting-State Functional Connectivity in Older Adults. Neural Regeneration Research, 14, 1544.
https://doi.org/10.4103/1673-5374.255976
[22]  Ferreira, L. K., Regina, A. C. B., Kovacevic, N., Martin, M. d. G. M., Santos, P. P., Carneiro, C. d. G., & Busatto, G. F. (2016). Aging Effects on Whole-Brain Functional Connectivity in Adults Free of Cognitive and Psychiatric Disorders. Cerebral Cortex, 26, 3851-3865.
https://doi.org/10.1093/cercor/bhv190
[23]  Foong, H. F., Hamid, T. A., Ibrahim, R., & Haron, S. A. (2018). Information Processing Speed as a Mediator between Psychosocial Stress and Global Cognition in Older Adults. Psychogeriatrics, 18, 21-29.
https://doi.org/10.1111/psyg.12279
[24]  Friedman, D., Nessler, D., Cycowicz, Y. M., & Horton, C. (2009). Development of and Change in Cognitive Control: A Comparison of Children, Young Adults, and Older Adults. Cognitive, Affective, & Behavioral Neuroscience, 9, 91-102.
https://doi.org/10.3758/CABN.9.1.91
[25]  Friedman, N. P., & Robbins, T. W. (2022). The Role of Prefrontal Cortex in Cognitive Control and Executive Function. Neuropsychopharmacology, 47, 72-89.
https://doi.org/10.1038/s41386-021-01132-0
[26]  Fuster, J. M. (1991). Behavioral Electrophysiology of the Prefrontal Cortex of the Primate. Progress in Brain Research, 85, 313-324.
https://doi.org/10.1016/S0079-6123(08)62687-4
[27]  Geerligs, L., Maurits, N. M., Renken, R. J., & Lorist, M. M. (2014). Reduced Specificity of Functional Connectivity in the Aging Brain during Task Performance. Human Brain Mapping, 35, 319-330.
https://doi.org/10.1002/hbm.22175
[28]  Geerligs, L., Renken, R. J., Saliasi, E., Maurits, N. M., & Lorist, M. M. (2015). A Brain-Wide Study of Age-Related Changes in Functional Connectivity. Cerebral Cortex, 25, 1987-1999.
https://doi.org/10.1093/cercor/bhu012
[29]  Gopinath, K., Krishnamurthy, V., Cabanban, R., & Crosson, B. A. (2015). Hubs of Anticorrelation in High-Resolution Resting-State Functional Connectivity Network Architecture. Brain Connectivity, 5, 267-275.
https://doi.org/10.1089/brain.2014.0323
[30]  Grady, C. L., Springer, M. V., Hongwanishkul, D., McIntosh, A. R., & Winocur, G. (2006). Age-Related Changes in Brain Activity across the Adult Lifespan. Journal of Cognitive Neuroscience, 18, 227-241.
https://doi.org/10.1162/jocn.2006.18.2.227
[31]  Gratton, C., Sun, H., & Petersen, S. E. (2018). Control Networks and Hubs. Psychophysiology, 55, e13032.
https://doi.org/10.1111/psyp.13032
[32]  Gusnard, D. A., & Raichle, M. E. (2001). Searching for a Baseline: Functional Imaging and the Resting Human Brain. Nature Reviews Neuroscience, 2, 685-694.
https://doi.org/10.1038/35094500
[33]  Langenecker, S. A., Nielson, K. A., & Rao, S. M. (2004). fMRI of Healthy Older Adults during Stroop Interference. Neuroimage, 21, 192-200.
https://doi.org/10.1016/j.neuroimage.2003.08.027
[34]  Lustig, C., Snyder, A. Z., Bhakta, M., O'Brien, K. C., McAvoy, M., Raichle, M. E., & Buckner, R. L. (2003). Functional Deactivations: Change with Age and Dementia of the Alzheimer Type. Proceedings of the National Academy of Sciences, 100, 14504-14509.
https://doi.org/10.1073/pnas.2235925100
[35]  MacDonald, A. W., Cohen, J. D., Stenger, V. A., & Carter, C. S. (2000). Dissociating the Role of the Dorsolateral Prefrontal and Anterior Cingulate Cortex in Cognitive Control. Science, 288, 1835-1838.
https://doi.org/10.1126/science.288.5472.1835
[36]  Mak, L. E., Minuzzi, L., MacQueen, G., Hall, G., Kennedy, S. H., & Milev, R. (2017). The Default Mode Network in Healthy Individuals: A Systematic Review and Meta-Analysis. Brain Connect, 7, 25-33.
https://doi.org/10.1089/brain.2016.0438
[37]  Malagurski, B., Liem, F., Oschwald, J., Mérillat, S., & J?ncke, L. (2020). Functional Dedifferentiation of Associative Resting State Networks in Older Adults—A Longitudinal Study. Neuroimage, 214, Article ID: 116680.
https://doi.org/10.1016/j.neuroimage.2020.116680
[38]  Mason, M. F., Norton, M. I., Van Horn, J. D., Wegner, D. M., Grafton, S. T., & Macrae, C. N. (2007). Wandering Minds: The Default Network and Stimulus-Independent Thought. Science, 315, 393-395.
https://doi.org/10.1126/science.1131295
[39]  Medaglia, J. D., Satterthwaite, T. D., Kelkar, A., Ciric, R., Moore, T. M., Ruparel, K., & Bassett, D. S. (2018). Brain State Expression and Transitions Are Related to Complex Executive Cognition in Normative Neurodevelopment. Neuroimage, 166, 293-306.
https://doi.org/10.1016/j.neuroimage.2017.10.048
[40]  Menon, V., & D’Esposito, M. (2022). The Role of PFC Networks in Cognitive Control and Executive Function. Neuropsychopharmacology, 47, 90-103.
https://doi.org/10.1038/s41386-021-01152-w
[41]  Molnar-Szakacs, I., & Uddin, L. Q. (2022). Anterior Insula as a Gatekeeper of Executive Control. Neuroscience & Biobehavioral Reviews, 139, Article ID: 104736.
https://doi.org/10.1016/j.neubiorev.2022.104736
[42]  Myerson, J., Emery, L., White, D. A., & Hale, S. (2003). Effects of Age, Domain, and Processing Demands on Memory Span: Evidence for Differential Decline. Aging, Neuropsychology, and Cognition, 10, 20-27.
https://doi.org/10.1076/anec.10.1.20.13454
[43]  Myerson, J., Robertson, S., & Hale, S. (2007). Aging and Intraindividual Variability in Performance: Analyses of Response Time Distributions. Journal of the Experimental Analysis of Behavior, 88, 319-337.
https://doi.org/10.1901/jeab.2007.88-319
[44]  Nia, G., Aygul, K., Nicholas, J. D., Robert, M. B., Arun, L. B., Jonathan, P. M., & Paul, G. M. (2014). The Salience Network Is Responsible for Switching between the Default Mode Network and the Central Executive Network: Replication from DCM. Neuroimage, 99, 180-190.
https://doi.org/10.1016/j.neuroimage.2014.05.052
[45]  Niendam, T. A., Laird, A. R., Ray, K. L., Dean, Y. M., Glahn, D. C., & Carter, C. S. (2012). Meta-Analytic Evidence for a Superordinate Cognitive Control Network Subserving Diverse Executive Functions. Cognitive, Affective, & Behavioral Neuroscience, 12, 241-268.
https://doi.org/10.3758/s13415-011-0083-5
[46]  Old, S. R., & Naveh-Benjamin, M. (2008). Differential Effects of Age on Item and Associative Measures of Memory: A Meta-Analysis. Psychology and Aging, 23, 104.
https://doi.org/10.1037/0882-7974.23.1.104
[47]  Parente, F., & Colosimo, A. (2020). Functional Connections between and within Brain Subnetworks under Resting-State. Scientific Reports, 10, Article No. 3438.
https://doi.org/10.1038/s41598-020-60406-7
[48]  Persson, J., Lustig, C., Nelson, J. K., & Reuter-Lorenz, P. A. (2007). Age Differences in Deactivation: A Link to Cognitive Control? Journal of Cognitive Neuroscience, 19, 1021-1032.
https://doi.org/10.1162/jocn.2007.19.6.1021
[49]  Prakash, R. S., Erickson, K. I., Colcombe, S. J., Kim, J. S., Voss, M. W., & Kramer, A. F. (2009). Age-Related Differences in the Involvement of the Prefrontal Cortex in Attentional Control. Brain and Cognition, 71, 328-335.
https://doi.org/10.1016/j.bandc.2009.07.005
[50]  Rabbitt, P. (1965). An Age-Decrement in the Ability to Ignore Irrelevant Information. Journal of Gerontology, 20, 233-238.
https://doi.org/10.1093/geronj/20.2.233
[51]  Ray, K. L., Ragland, J. D., MacDonald, A. W., Gold, J. M., Silverstein, S. M., Barch, D. M., & Carter, C. S. (2020). Dynamic Reorganization of the Frontal Parietal Network during Cognitive Control and Episodic Memory. Cognitive, Affective, & Behavioral Neuroscience, 20, 76-90.
https://doi.org/10.3758/s13415-019-00753-9
[52]  Rypma, B., & D’Esposito, M. (2000). Isolating the Neural Me-chanisms of Age-Related Changes in Human Working Memory. Nature Neuroscience, 3, 509-515.
https://doi.org/10.1038/74889
[53]  Salthouse, T. A. (1988). The Role of Processing Resources in Cognitive Aging. In M. L. Howe, & C. J. Brainerd (Eds.), Cognitive Development in Adulthood: Progress in Cognitive Development Re-search (pp. 185-239). Springer.
https://doi.org/10.1007/978-1-4612-3852-2_7
[54]  Salthouse, T. A. (1990). Working Memory as a Processing Resource in Cognitive Aging. Developmental Review, 10, 101-124.
https://doi.org/10.1016/0273-2297(90)90006-P
[55]  Salthouse, T. A. (1996). The Processing-Speed Theory of Adult Age Differences in Cognition. Psychological Review, 103, 403.
https://doi.org/10.1037/0033-295X.103.3.403
[56]  Salthouse, T. A. (2000). Aging and Measures of Processing Speed. Biological Psychology, 54, 35-54.
https://doi.org/10.1016/S0301-0511(00)00052-1
[57]  Shaw, E. E., Schultz, A. P., Sperling, R. A., & Hedden, T. (2015). Functional Connectivity in Multiple Cortical Networks Is Associated with Performance across Cognitive Domains in Older Adults. Brain Connectivity, 5, 505-516.
https://doi.org/10.1089/brain.2014.0327
[58]  Sporns, O. (2013). Network Attributes for Segregation and Integration in the Human Brain. Current Opinion in Neurobiology, 23, 162-171.
https://doi.org/10.1016/j.conb.2012.11.015
[59]  Stemmler, M., Petermann, F., Daseking, M., Siebert, J., Schott, H., Lehfeld, H., & Horn, R. (2013). The Assessment and Course of Development of Cognitive Abilities in the Elderly. Gesundheitswesen (Bundesverband der Arzte des Offentlichen Gesundheitsdienstes (Germany)), 75, 761-767.
https://doi.org/10.1055/s-0033-1357164
[60]  Viskontas, I. V., Morrison, R. G., Holyoak, K. J., Hummel, J. E., & Knowlton, B. J. (2004). Relational Integration, Inhibition, and Analogical Reasoning in Older Adults. Psychology and Aging, 19, 581.
https://doi.org/10.1037/0882-7974.19.4.581
[61]  Wang, R., Liu, M., Cheng, X., Wu, Y., Hildebrandt, A., & Zhou, C. (2021). Segregation, Integration, and Balance of Large- Scale Resting Brain Networks Configure Different Cognitive Abilities. Proceedings of the National Academy of Sciences of the United States of America, 118, e2022288118.
https://doi.org/10.1073/pnas.2022288118
[62]  Wu, J. T., Wu, H. Z., Yan, C. G., Chen, W. X., Zhang, H. Y., He, Y., & Yang, H. S. (2011). Aging-Related Changes in the Default Mode Network and Its Anti-Correlated Networks: A Resting-State fMRI Study. Neuroscience Letters, 504, 62-67.
https://doi.org/10.1016/j.neulet.2011.08.059
[63]  Zysset, S., Schroeter, M. L., Neumann, J., & von Cramon, D. Y. (2007). Stroop Interference, Hemodynamic Response and Aging: An Event-Related fMRI Study. Neurobiology of Aging, 28, 937-946.
https://doi.org/10.1016/j.neurobiolaging.2006.05.008

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133