全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于贝叶斯网络的留守中学生网络成瘾相关因素分析
Analysis of Factors Associated with Internet Addiction among Left-Behind Secondary Students Based on Bayesian Network Model

DOI: 10.12677/AP.2023.133129, PP. 1075-1084

Keywords: 网络成瘾,留守中学生,贝叶斯网络模型
Internet Addiction
, Left-Behind Secondary Students, Bayesian Network Model

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的:对重庆市渝东南民族地区(石柱县和秀山县)的5290名中学生(留守中学生2553名)进行问卷调查,建立基于bootstrap的贝叶斯网络模型,以期探讨留守中学生网络成瘾行为及其相关因素间的网络关系。方法:单因素χ2、多因素Logistic回归对变量进行初步筛选,使用爬山算法构建拓扑结构并采用极大似然估计法进行参数学习完成贝叶斯网络模型的构建。并通过准确率、敏感度等指标检验模型的精度并将其与Logistic回归模型进行对比。结果:贝叶斯网络模型最终筛选出7个网络成瘾相关的重要变量,与网络成瘾直接相关的因素有3个,分别为上网时长、抑郁和焦虑,与家长沟通情况通过日均上网时长与网络成瘾间接联系。贝叶斯网络模型总体预测准确率为81.60%,灵敏度为93.56%。结论:贝叶斯网络模型能较好地进解释网络成瘾及其相关变量间的依存关系,有助于发现网络成瘾检出的潜在影响因素。
Objective: A questionnaire survey was conducted on 5290 secondary school students (2553 left- behind students) in the ethnic areas of southeast Chongqing (Shizhu and Xiushan counties) to build a bootstrap-based Bayesian network model in order to explore the network relationship between left-behind secondary school students’ Internet addiction behaviour and its related factors. Methods: χ2 and multivariate Logistic regression were used to initially select the variables, and the construction of the Bayesian network model was established by the hill-climbing algorithm to construct the topology and using the great likelihood estimation method for parameter learning. The precision of the model was tested by accuracy and sensitivity and compared with the Logistic regression model. Results: The Bayesian network model eventually identified seven important variables related to Internet addiction. Three factors were directly related to Internet addiction, respectively, the length of time spent online, depression and anxiety, and communication with parents was indirectly related to Internet addiction through the length of time spent online. The overall prediction accuracy of the Bayesian network model was 81.60% and the sensitivity was 93.56%. Conclusion: The Bayesian network model can provide a reliable explanation of the dependency relationship between Internet addiction and its related variables, and help to identify potential influencing factors for the detection of Internet addiction.

References

[1]  白翠平, 杨艳林, 黄彦(2021). 留守中学生社会支持与网络成瘾的“量-效”趋势研究. 四川精神卫生, 34(5), 464-468.
[2]  鲍成臻, 高丽丽, 韩历丽(2021). 中学生网络沉溺现状及其与抑郁水平的关系. 中国儿童保健杂志, 29(1), 33-36.
[3]  范兴华, 方晓义(2010). 不同监护类型留守儿童与一般儿童问题行为比较. 中国临床心理学杂志, (2), 4.
[4]  黄彦(2018). 青少年网络成瘾者自杀行为特征及自杀风险评估. 博士学位论文, 重庆: 重庆医科大学.
[5]  教育部. 2020年全国教育统计数据. http://www.moe.gov.cn/jyb_sjzl/moe_560/2020/quanguo
[6]  申继亮, 刘霞, 赵景欣, 师保国(2015). 城镇化进程中农民工子女心理发展研究. 心理发展与教育, 31(1), 108-116.
[7]  王斌, 冯慧芬, 黄平, 赵敬, 易佳音(2018). 基于贝叶斯网络模型对重症手足口病预测变量的筛选研究. 现代预防医学, 45(9), 1537-1541.
[8]  王旭, 刘衍玲, 林杰, 刘传星, 魏灵真, 邱涵宇(2022). 亲子关系对中学生心理健康的影响: 社会支持和心理素质的链式中介作用. 心理发展与教育, 38(2), 263-271.
https://doi.org/10.16187/j.cnki.issn1001-4918.2022.02.13
[9]  魏珍, 张雪雷, 饶华祥, 王华芳, 王祥, 仇丽霞(2016). 禁忌搜索算法的贝叶斯网络模型在冠心病影响因素分析中的应用. 中华流行病学杂志, 37(6), 895-899.
[10]  杨婉君(2021). 中职生亲子沟通与网络成瘾的关系——交叉滞后分析. 广东教育(职教版), (1), 124-126.
[11]  叶一舵, 白丽英(2002). 国内外关于亲子关系及其对儿童心理发展影响的研究. 福建师范大学学报(哲学社会科学版), (2), 130-136.
[12]  赵冬梅, 程星露, 王婷, 郭雅莉, 覃晓静(2019). 留守中学生感知的父母冲突与师生冲突的关系: 亲子依恋的中介作用. 教育研究与实验, (3), 91-96.
[13]  周浩, 龙立荣(2004). 共同方法偏差的统计检验与控制方法. 心理科学进展, 12(6), 942-942+950.
[14]  Acikgoz, A., Acikgoz, B., & Acikgoz, O. (2022). The Effect of Internet Addiction and Smartphone Addiction on Sleep Quality among Turkish Adolescents. PeerJ, 10, e12876.
https://doi.org/10.7717/peerj.12876
[15]  Aguilera-Guzmán, R. M., de Snyder, V. N., Romero, M., & Medina-Mora, M. E. (2004). Paternal Absence and International Migration: Stressors and Compensators Associated with the Mental Health of Mexican Teenagers of Rural Origin. Adolescence, 39, 711-723.
[16]  Amiel, T., & Sargent, S. L. (2004). Individual Differences in Internet Usage Motives. Computers in Human Behavior, 20, 711-726.
https://doi.org/10.1016/j.chb.2004.09.002
[17]  Astrup, A., Pedersen, C. B., Mok, P. L. H., Carr, M. J., & Webb, R. T. (2017). Self-Harm Risk between Adolescence and Midlife in People Who Experienced Separation from One or both Parents during Childhood. Journal of Affective Disorders, 208, 582-589.
https://doi.org/10.1016/j.jad.2016.10.023
[18]  Bruni, O., Sette, S., Fontanesi, L., Baiocco, R., Laghi, F., & Baumgartner, E. (2015). Technology Use and Sleep Quality in Preadolescence and Adolescence. Journal of Clinical Sleep Medicine, 11, 1433-1441.
https://doi.org/10.5664/jcsm.5282
[19]  Cai, J., Wang, Y., Wang, F., Lu, J., Li, L., & Zhou, X. (2021). The Association of Parent-Child Communication with Internet Addiction in Left-Behind Children in China: A Cross-Sectional Study. International Journal of Public Health, 66, Article ID: 630700.
https://doi.org/10.3389/ijph.2021.630700
[20]  Huang, Q., Li, Y., Huang, S., Qi, J., Shao, T., Chen, X., & Chen, H. (2020). Smartphone Use and Sleep Quality in Chinese College Students: A Preliminary Study. Frontiers in Psychiatry, 11, 352.
https://doi.org/10.3389/fpsyt.2020.00352
[21]  Kang, Y., Liu, S., Yang, L., Xu, B., Lin, L., Xie, L., & Zhang, B. (2020). Testing the Bidirectional Associations of Mobile Phone Addiction Behaviors with Mental Distress, Sleep Disturbances, and Sleep Patterns: A One-Year Prospective Study among Chinese College Students. Frontiers in Psychiatry, 11, 634.
https://doi.org/10.3389/fpsyt.2020.00634
[22]  Kocas, F., & ?a?maz, T. (2018). Internet Addiction Increases Poor Sleep Quality among High School Students. Turkish Journal of Public Health, 16, 167-177.
https://doi.org/10.20518/tjph.407717
[23]  Ostovar, S., Allahyar, N., Aminpoor, H., Moafian, F., Nor, M. B. M., & Griffiths, M. D. (2016). Internet Addiction and Its Psychosocial Risks (Depression, Anxiety, Stress and Loneliness) among Iranian Adolescents and Young Adults: A Structural Equation Model in a Cross-Sectional Study. International Journal of Mental Health and Addiction, 14, 257-267.
https://doi.org/10.1007/s11469-015-9628-0
[24]  Pfeffer, C. R. (2001). Diagnosis of Childhood and Adolescent Suicidal Behavior: Unmet Needs for Suicide Prevention. Biological Psychiatry, 49, 1055-1061.
https://doi.org/10.1016/S0006-3223(01)01141-6
[25]  Riehm, K. E., Feder, K. A., Tormohlen, K. N., Crum, R. M., Young, A. S., Green, K. M., & Mojtabai, R. (2019). Associations between Time Spent Using Social Media and Internalizing and Externalizing Problems among US Youth. JAMA Psychiatry, 76, 1266-1273.
https://doi.org/10.1001/jamapsychiatry.2019.2325
[26]  Su, S., Li, X. Q., Lin, D., Xu, X., & Zhu, M. (2013). Psy-chological Adjustment among Left-Behind Children in Rural China: The Role of Parental Migration and Parent-Child Communication. Child: Care, Health and Development, 39, 162-170.
https://doi.org/10.1111/j.1365-2214.2012.01400.x

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133