全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Ce基催化剂在HCl催化氧化中的研究进展
Research Progress of Ce-Based Catalysts in Catalytic Oxidation of HCl

DOI: 10.12677/MS.2023.133025, PP. 213-223

Keywords: Deacon反应,Ce基催化剂,HCl,Cl2
Deacon Reaction
, Ce-Based Catalyst, HCl, Cl2

Full-Text   Cite this paper   Add to My Lib

Abstract:

氯化学工业过程中会产生大量副产物氯化氢(HCl),虽HCl存在工业用途,但仍供过于求。从HCl中回收氯气(Cl2)既可提高Cl原子的利用率,又可减少HCl对环境的污染。多相催化氧化HCl (Deacon过程)是实现从HCl中回收Cl2最为有效且经济的方法,工业应用中的催化剂以Ru基催化剂居多,但由于Ru稀缺的资源和昂贵的成本,Ce基催化剂成为了可部分替代Ru基催化剂的理想选择。Ce除了具有丰富的矿产资源的优势外,CeO2在Ce3+/Ce4+之间还表现出较好的可逆氧化还原性能,有利于促进催化氧化反应。但是,进一步提高Ce基催化剂的催化活性仍是亟需解决的问题。本文主要综述了Ce基催化剂在HCl催化氧化中的最新研究进展,介绍了如何提高Ce基催化剂的催化性能,同时还阐述了Ce基材料的表面反应机理,对未来Ce催化剂的发展进行了展望。
A large number of by-products hy-drogen chloride (HCl) is produced in the process of chlorine chemical industry. Although HCl has industrial uses, it is still in oversupply. Recovering chlorine (Cl2) from HCl can not only improve the utilization rate of Cl atoms, but also relieve the pollution of HCl to the environment. Heterogeneous catalytic oxidation of HCl is the most effective and economical method to recover Cl2 from HCl, and the industrial application of catalysts is mostly based on Ru. However, due to the high cost of Ru, Ce-based catalysts have become an ideal choice to partially replace Ru-based catalysts. Besides its advantage of rich mineral resources, CeO2 shows excellent reversible redox performance between Ce3+ and Ce4+, which is conducive to promoting catalytic oxidation. However, it is still an urgent problem to further improve the catalytic activity of Ce-based catalysts. In this paper, we mainly re-view the latest research progress of Ce-based catalysts in HCl catalytic oxidation, and introduce how to improve the catalytic performance of Ce-based catalysts. At the same time, we expound the sur-face reaction mechanism of Ce-based materials, and the future development of Ce-based catalysts is prospected.

References

[1]  Hammes, M., Valtchev, M., Roth, M.B., St?we, K. and Maier, W.F. (2013) A Search for Alternative Deacon Catalysts. Applied Catalysis B: Environmental, 132-133, 389-400.
https://doi.org/10.1016/j.apcatb.2012.11.034
[2]  Seki, K. (2010) Development of RuO2/Rutile-TiO2 Catalyst for Industrial HCl Oxidation Process. Catalysis Surveys from Asia, 14, 168-175.
https://doi.org/10.1007/s10563-010-9091-7
[3]  Hisham, M.W.M. and Benson, S.W. (1995) Ther-mochemistry of the Deacon Process. The Journal of Physical Chemistry, 99, 6194-6198.
https://doi.org/10.1021/j100016a065
[4]  Pérez-Ramírez, J., Mondelli, C., Schmidt, T., Schlüter, O.F.-K., Wolf, A., Mleczko, L. and Dreier, T. (2011) Sustainable Chlorine Recycling via Catalysed HCl Oxidation: From Fundamentals to Implementation. Energy & Environmental Science, 4, 4786-4799.
https://doi.org/10.1039/c1ee02190g
[5]  Liu, Y.P., Li, S.Y., Lu, X.Q., Ma, R., Fu, Y.H., Wang, S.H., Zhou, L.Y. and Zhu, W.D. (2021) Insights into the Sintering Resistance of RuO2/TiO2-SiO2 in the Deacon Process: Role of SiO2. Catalysis Science & Technology, 11, 5460- 5466.
https://doi.org/10.1039/D1CY01023A
[6]  Li, S.Y., Xu, B.W., Wang, Y.X., Liu, Y.P., Lu, X.Q., Ma, R., Fu, Y.H., Wang, S.H., Zhou, L.Y. and Zhu, W.D. (2022) Insight into the Effects of Calcination Temperature on the Structure and Performance of RuO2/TiO2 in the Deacon Process. Catalysis Science & Technology, 12, 5257-5264.
https://doi.org/10.1039/D2CY00812B
[7]  Wattimena, F. and Sachtler, W.M.H. (1981) Catalyst Research for the Shell Chlorine Process. Studies in Surface Science and Catalysis, 7, 816-827.
https://doi.org/10.1016/S0167-2991(08)64695-9
[8]  Pan, H.Y., Minet, R.G., Benson, S.W. and Tsotsis, T.T. (1994) Process for Converting Hydrogen Chloride to Chlorine. Industrial & Engineering Chemistry Research, 33, 2996-3003.
https://doi.org/10.1021/ie00036a014
[9]  Amrute, A.P., Mondelli, C. and Pérez-Ramírez, J. (2012) Kinetic Aspects and Deactivation Behaviour of Chromia-Based Catalysts in Hydrogen Chloride Oxidation. Catalysis Science & Technology, 2, 257-265.
https://doi.org/10.1039/c2cy20185b
[10]  Feng, K.K., Li, C.W., Guo, Y.L., Zhan, W.C., Ma, B.Q., Chen, B.W., Yuan, M.Q. and Lu, G.Z. (2015) An Efficient Cu-K-La/γ-Al2O3 Catalyst for Catalytic Oxidation of Hydrogen Chloride to Chlorine. Applied Catalysis B: Environmental, 164, 483-487.
https://doi.org/10.1016/j.apcatb.2014.09.063
[11]  Sun, Y., Li, C.W., Guo, Y.L., Zhan, W.C., Guo, Y., Wang, L., Wang, Y.S. and Lu, G.Z. (2018) Catalytic Oxidation of Hydrogen Chloride to Chlorine over Cu-K-Sm/γ-Al2O3 Catalyst with Excellent Catalytic Performance. Catalysis Today, 307, 286-292.
https://doi.org/10.1016/j.cattod.2017.04.014
[12]  Fei, Z.Y., Liu, H.Y., Dai, Y., Ji, W.J., Chen, X., Tang, J.H., Cui, M.F. and Qiao, X. (2014) Efficient Catalytic Oxidation of HCl to Recycle Cl2 over the CuO-CeO2 Composite Oxide Supported On Y Type Zeolite. Chemical Engineering Journal, 257, 273-280.
https://doi.org/10.1016/j.cej.2014.07.033
[13]  Fei, Z.Y., Xie, X.X., Dai, Y., Liu, H.Y., Chen, X., Tang, J.H., Cui, M.F. and Qiao, X. (2014) HCl Oxidation for Sustainable Cl2 Recycle over the CexZr1-xO2 Catalysts: Effects of Ce/Zr Ratio on Activity and Stability. Industrial & Engineering Chemistry Research, 53, 19438-19445.
https://doi.org/10.1021/ie503297k
[14]  M?ller, M., Tarabanko, N., Wessel, C., Ellinghaus, R., Over, H. and Smarsly, B.M. (2018) Electrospinning of CeO2 Nanoparticle Dispersions into Mesoporous Fibers: On the Interplay of Stability and Activity in the HCl Oxidation Reaction. RSC Advances, 8, 132-144.
https://doi.org/10.1039/C7RA03020G
[15]  Li, C.W., Hess, F., Djerdj, I., Chai, G.T., Sun, Y., Guo, Y.L., Smarsly, B.M. and Over, H. (2018) The Stabilizing Effect of Water and High Reaction Temperatures On the CeO2-Catalyst in the Harsh HCl Oxidation Reaction. Journal of Catalysis, 357, 257-262.
https://doi.org/10.1016/j.jcat.2017.11.019
[16]  Amrute, A.P., Larrazábal, G.O., Mondelli, C. and Pérez-Ramírez, J. (2013) CuCrO2 Delafossite: A Stable Copper Catalyst for Chlorine Production. Angewandte Chemie International Edi-tion, 52, 9772-9775.
https://doi.org/10.1002/anie.201304254
[17]  Tian, X., Guo, C., Zhong, H., Zhou, Y.H. and Xiao, J.P. (2019) Ex-ceptional Stability and Chemical Mechanism over Spinel ZnCr2O4 Catalyst for HCl Oxidation to Cl2. Molecular Catalysis, 470, 82-88.
https://doi.org/10.1016/j.mcat.2019.03.025
[18]  Matthias, S., Zichittella, G., Paunovi?, V. and Pérez-Ramírez, J. (2020) Ceria in Halogen Hhemistry. Chinese Journal of Catalysis, 41, 915-927.
https://doi.org/10.1016/S1872-2067(19)63528-X
[19]  Yao, X.J., Chen, L., Cao, J., Yao, F.M., Tan, W. and Dong, L. (2018) Morphology and Crystal-Plane Effects of CeO2 on TiO2/CeO2Catalysts during NH3-SCR Reaction. Industrial & Engineering Chemistry Research, 57, 12407-12419.
https://doi.org/10.1021/acs.iecr.8b02830
[20]  Farra, R., Eichelbaum, M., Schl?gl, R., Szentmiklósi, L., Schmidt, T., Amrute, A.P., Mondelli, C., Pérez-Ramírez, J. and Teschner, D. (2013) Do Observations on Surface Coverage-Reactivity Correlations Always Describe the True Catalytic Process? A Case Study on Ceria. Journal of Catalysis, 297, 119-127.
https://doi.org/10.1016/j.jcat.2012.09.024
[21]  Moser, M., Mondelli, C., Schmidt, T., Girgsdies, F., Schuster, M.E., Farra, R., Szentmiklósi, L., Teschner, D. and Pérez-Ramírez, J. (2013) Supported CeO2 Catalysts in Technical Form for Sustainable Chlorine Production. Applied Catalysis B: Environmental, 132-133, 123-131.
https://doi.org/10.1016/j.apcatb.2012.11.024
[22]  Tian, X., Lin, B.N., Li, Y.P., Wang, S., Zhou, Y.H. and Zhou, H. (2020) CeO2-MnOx Composite Loaded on Al2O3 as a Catalyst for HCl Oxidation. Catalysis Science & Technology, 10, 4553-4561.
https://doi.org/10.1039/D0CY00849D
[23]  Tian, X., Li, Y.P., Lin, B.N., Wang, S., Zhou, Y.H. and Zhou, H. (2021) Molecular Catalysis, Improved Cl2 Yield and Stability of CeO2-MnOx/Al2O3 Catalyst for HCl Oxi-dation to Cl2 at Higher Reaction Temperature. Molecular Catalysis, 506, Article ID: 111563.
https://doi.org/10.1016/j.mcat.2021.111563
[24]  Amrute, A.P., Mondelli, C., Moser, M., Novell-Leruth, G., López, N., Rosenthal, D., Farra, R., Schuster, M.E., Teschner, D., Schmidt, T. and Pérez-Ramírez, J. (2012) Performance, Structure, and Mechanism of CeO2 in HCl Oxidation to Cl2. Journal of Catalysis, 286, 287-297.
https://doi.org/10.1016/j.jcat.2011.11.016
[25]  Amrute, A.P., Mondelli, C., Hevia, M.A.G. and Pérez-Ramírez, J. (2011) Temporal Analysis of Products Study of HCl Oxidation on Copper- and Ruthenium-Based Catalysts. The Journal of Physical Chemistry C, 115, 1056-1063.
https://doi.org/10.1021/jp1058319
[26]  Amrute, A.P., Mondelli, C., Hevia, M.A.G. and Pérez-Ramírez, J. (2011) Mechanism-Performance Relationships of Metal Oxides in Catalyzed HCl Oxidation. ACS Catalysis, 1, 583-590.
https://doi.org/10.1021/cs200075j
[27]  Li, C.W., Sun, Y., Djerdj, I., Voepel, P., Sack, C., Weller, T., Ellinghaus, R., Sann, J., Guo, Y.L., Smarsly, B.M. and Over, H. (2017) Shape-Controlled CeO2 Nanoparticles: Stability and Activity in the Catalyzed HCl Oxidation Reaction. ACS Catalysis, 7, 6453-6463.
https://doi.org/10.1021/acscatal.7b01618
[28]  M?ller, M., Over, H., Smarsly, B., Tarabanko, N. and Urban, S. (2015) Electrospun Ceria-Based Nanofibers for the Facile Assessment of Catalyst Morphological Stability under Harsh HCl Oxidation Reaction Conditions. Catalysis Today, 253, 207-218.
https://doi.org/10.1016/j.cattod.2015.02.027
[29]  Capdevila-Cortada, M., Vilé, G., Teschner, D., Pérez-Ramírez, J. and López, N. (2016) Reactivity Descriptors for Ceria in Catalysis. Applied Catalysis B: Environmental, 197, 299-312.
https://doi.org/10.1016/j.apcatb.2016.02.035
[30]  Montini, T., Melchionna, M., Monai, M. and Fornasiero, P. (2016) Fundamentals and Catalytic Applications of CeO2- Based Materials. Chemical Reviews, 116, 5987-6041.
https://doi.org/10.1021/acs.chemrev.5b00603
[31]  Campbell, C.T. and Peden, C.H.F. (2005) Oxygen Vacancies and Catalysis on Ceria Surfaces. Science, 309, 713-714.
https://doi.org/10.1126/science.1113955
[32]  Sun, Y., Li, C.W., Djerdj, I., Khalid, O., Cop, P., Sann, J., Weber, T., Werner, S., Turek, K., Guo, Y.L., Smarsly, B.M. and Over, H. (2019) Oxygen Storage Capacity versus Catalytic Activi-ty of Ceria-Zirconia Solid Solutions in CO and HCl Oxidation. Catalysis Science & Technology, 9, 2631-2172.
https://doi.org/10.1039/C9CY00222G
[33]  Trovarelli, A., de Leitenburg, C., Boaro, M. and Dolcetti, G. (1999) The Utilization of Ceria in Industrial Catalysis. Catalysis Today, 50, 353-367.
https://doi.org/10.1016/S0920-5861(98)00515-X
[34]  Saqer, S.M., Kondarides, D.I. and Verykios, X.E. (2011) Catalytic Oxidation of Toluene over Binary Mixtures of Copper, Manganese and Cerium Oxides Supported On γ-Al2O3. Applied Catalysis B: Environmental, 103, 275-286.
https://doi.org/10.1016/j.apcatb.2011.01.001
[35]  Yu, M.-F., Lin, X.-Q., Yan, M., Li, X.-D., Chen, T. and Yan, J.-H. (2016) Low Temperature Destruction of PCDD/Fs over V2O5-CeO2/TiO2 Catalyst with Ozone. Environmental Science and Pollution Research, 23, 17563-17570.
https://doi.org/10.1007/s11356-016-6955-z
[36]  Han, Z.T., Li, X.D., Wang, X., Gao, Y., Yang, S.L., Song, L.G., Dong, J.M. and Pan, X.X. (2022) Insight Into the Promoting Effect of Support Pretreatment with Sulfate Acid on Selec-tive Catalytic Reduction Performance of CeO2/ ZrO2 Catalysts. Journal of Colloid and Interface Science, 608, 2718-2729.
https://doi.org/10.1016/j.jcis.2021.10.191
[37]  Green, I.X., Tang, W.J., Neurock, M. and Yates Jr., J.T. (2006) Low-Temperature Catalytic H2 Oxidation over Au Nanoparticle/TiO2 Dual Perimeter Sites. Angewandte Chemie Interna-tional Edition, 50, 10186-10189.
https://doi.org/10.1002/anie.201101612
[38]  Enache, D.I., Edwards, J.K., Landon, P., Solsona-Espriu, B., Carley, A.F., Herzing, A.A., Watanabe, M., Kiely, C.J., Knight, D.W. and Hutchings, G.J. (2006) Solvent-Free Oxidation of Primary Alcohols to Aldehydes Using Au-Pd/TiO2 Catalysts. Science, 311, 362-365.
https://doi.org/10.1126/science.1120560
[39]  Hu, C., Peng, T.W., Hu, X.X., Nie, Y.L., Zhou, X.F., Qu, J.H. and He, H. (2010) Plasmon-Induced Photodegradation of Toxic Pollutants with Ag-AgI/Al2O3 under Visible-Light Irradia-tion. Journal of the American Chemical Society, 132, 857-862.
https://doi.org/10.1021/ja907792d
[40]  Postole, G., Chowdhury, B., Karmakar, B., Pinki, K., Banerji, J. and Auroux, A. (2010) Knoevenagel Condensation Reaction over Acid-Base Bifunctional Nanocrystalline CexZr1-xO2 Solid Solutions. Journal of Catalysis, 269, 110-121.
https://doi.org/10.1016/j.jcat.2009.10.022
[41]  Hanaor, D.A.H. and Sorrell, C.C. (2011) Review of the Anatase to Rutile Phase Transformation. Journal of Materials Science, 46, 855-874.
https://doi.org/10.1007/s10853-010-5113-0
[42]  Sun, Y., Cop, P., Djerdj, I., Guo, X.H., Weber, T., Khalid, O., Guo, Y.L., Smarsly, B.M. and Over, H. (2019) CeO2 Wetting Layer on ZrO2 Particle with Sharp Solid Interface as Highly Active and Stable Catalyst for HCl Oxidation Reaction. ACS Catalysis, 9, 10680-10693.
https://doi.org/10.1021/acscatal.9b03482
[43]  Velasquez Ochoa, J., Farci, E., Cavani, F., Sinisi, F., Artiglia, L., Agnoli, S., Granozzi, G., Paganini, M.C. and Malfatti, L. (2019) CeOx /TiO2 (Rutile) Nanocomposites for the Low-Temperature Dehydrogenation of Ethanol to Acetaldehyde: A Diffuse Reflectance Infrared Fourier Transform Spectroscopy-Mass Spectrometry Study. ACS Applied Nano Materials, 2, 3434-3443.
https://doi.org/10.1021/acsanm.9b00366
[44]  Chen, X., Xu, X.H., Fei, Z.Y., Xie, X.X., Lou, J.W., Tang, J.H., Cui, M.F. and Qiao, X. (2016) CeO2 Nanodots Embedded in a Porous Silica Matrix as an Active Yet Durable Catalyst for HCl Oxidation. Catalysis Science & Technology, 6, 5116-5123.
https://doi.org/10.1039/C5CY02300A
[45]  Zhang, Y., Yuwono, A.H., Wang, J. and Li, J. (2009) Enhanced Photocatalysis by Doping Cerium into Mesoporous Titania Thin Films. The Journal of Physical Chemistry C, 113, 21406-21412.
https://doi.org/10.1021/jp907901k
[46]  Chen, L., Li, J.H. and Ge, M. (2009) Promotional Effect of Ce-Doped V2O5-WO3/TiO2 with Low Vanadium Loadings for Se-lective Catalytic Reduction of NOx by NH3. The Journal of Physical Chemistry C, 113, 21177-21184.
https://doi.org/10.1021/jp907109e
[47]  Moser, M., Vilé, G., Colussi, S., Krumeich, F., Teschner, D., Szentmiklósi, L., Trovarelli, A. and Pérez-Ramírez, J. (2015) Structure and Reactivity of Ceria-Zirconia Catalysts for Bromine and Chlorine Production via the Oxidation of Hydrogen Halides. Journal of Catalysis, 331, 128-137.
https://doi.org/10.1016/j.jcat.2015.08.024
[48]  Kehoe, A.B., Scanlon, D.O. and Watson, G.W. (2011) Role of Lat-tice Distortions in the Oxygen Storage Capacity of Divalently Doped CeO2. Chemistry of Materials, 23, 4464-4468.
https://doi.org/10.1021/cm201617d
[49]  Cop, P., Maile, R., Sun, Y., Khalid, O., Djerdj, I., Esch, P., Heiles, S., Over, H. and Smarsly, B.M. (2020) Impact of Aliovalent/Isovalent Ions (Gd, Zr, Pr, and Tb) on the Catalytic Stability of Mesoporous Ceria in the HCl Oxidation Reaction. ACS Applied Nano Materials, 3, 7406-7419.
https://doi.org/10.1021/acsanm.0c00994
[50]  Lucid, A.K., Keating, P.R.L., Allen, J.P. and Watson, G.W. (2016) Structure and Reducibility of CeO2 Doped with Trivalent Cations. The Journal of Physical Chemistry C, 120, 23430-23440.
https://doi.org/10.1021/acs.jpcc.6b08118
[51]  Li, P., Chen, X.Y., Li, Y.D. and Schwank, J.W. (2019) A Review on Oxygen Storage Capacity of CeO2-Based Materials: Influence Factors, Measurement Techniques, and Applications in Reactions Related to Catalytic Automotive Emissions Control. Catalysis Today, 327, 90-115.
https://doi.org/10.1016/j.cattod.2018.05.059
[52]  Neto, R.C.R. and Schmal, M. (2013) Synthesis of CeO2 and CeZrO2 Mixed Oxide Nanostructured Catalysts for the Iso-Syntheses Reaction. Applied Catalysis A: General, 450, 131-142.
https://doi.org/10.1016/j.apcata.2012.10.002
[53]  Masahiro, S. (2003) Oxygen Storage Materials for Au-tomotive Catalysts: Ceria-Zirconia Solid Solutions. Catalysis Surveys from Asia, 7, 77-87.
https://doi.org/10.1023/A:1023488709527
[54]  Li, C.W., Sun, Y., Hess, F., Djerdj, I., Sann, J., Voepel, P., Cop, P., Guo, Y.L., Smarsly, B.M. and Over, H. (2018) Catalytic HCl Oxidation Reaction: Stabilizing Effect of Zr-Doping on CeO2 Nano-Rods. Applied Catalysis B: Environmental, 239, 628-635.
https://doi.org/10.1016/j.apcatb.2018.08.047
[55]  Sun, Y., Hess, F. Dijerdj, I., Wang, Z., Weber, T., Guo, Y.L., Smarsly, B.M. and Over, H. (2020) sReactivation of CeO2-Based Catalysts in the HCl Oxidation Reaction: In Situ Quan-tification of the Degree of Chlorination and Kinetic Modeling. ChemCatChem, 12, 5511-5522.
https://doi.org/10.1002/cctc.202000907

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133