全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

气泡水平和温度梯度对水下鬼成像的影响
Effects of Bubble Level and Temperature Gradient on Underwater Computational Ghost Imaging

DOI: 10.12677/APP.2023.133005, PP. 38-48

Keywords: 计算鬼成像,水下湍流,指数广义Gamma分布
Computational Ghost Imaging
, Underwater Turbulence, Exponential-Generalized Gamma Distribution

Full-Text   Cite this paper   Add to My Lib

Abstract:

计算鬼成像(CGI)是一种有望降低水下湍流信道带来的负面影响的方法。然而,基于水下湍流信道的CGI传输系统的理论研究鲜有报道。本文研究了基于水下湍流信道的CGI和压缩感知计算鬼成像(CSCGI)系统的峰值信噪比(PSNR)性能和结构相似度(SSIM)性能。并选取两种典型的强度波动模型作为理论信道模型。所选模型的概率密度函数(PDF)分别服从指数广义Gamma分布(EGG)和指数Gamma分布(EG)。通过设置适当的气泡水平和温度梯度参数,我们获得了上述方案的PSNR性能和SSIM性能以及可视化成像结果。我们的工作为未来研究基于水下湍流信道的实际CGI和CSCGI系统提供了理论参考。
Computational ghost imaging (CGI) is a promising method to reduce the negative effects of underwater turbulent channels. However, the theoretical research of CGI transmission system based on underwater turbulent channel is rarely reported. This paper studies the peak signal-to-noise ratio (PSNR) performance and structural similarity (SSIM) performance of CGI and compressed sensing computational ghost imaging (CSCGI) systems based on underwater turbu-lent channels. Two typical intensity fluctuation models are selected as theoretical channel models. The probability density function (PDF) of the selected model obeys exponential generalized Gamma distribution (EGG) and exponential Gamma distribution (EG), respectively. By setting the appropriate bubble level and temperature gradient parameters, we obtain the PSNR performance, SSIM performance and visual imaging results of the above scheme. Our work provides a theoretical reference for future research on actual CGI and CSCGI systems based on underwater turbulent channels.

References

[1]  Pittman, T.B., Shih, Y.H., Strekalov, D.V. and Sergienko, A.V. (1995) Optical Imaging by Means of Two-Photon Quantum Entanglement. Physical Review A, 52, R3429-R3432.
https://doi.org/10.1103/PhysRevA.52.R3429
[2]  Shapiro, J.H. and Boyd, R.W. (2012) The Physics of Ghost Imaging. Quantum Information Processing, 11, 949-993.
https://doi.org/10.1007/s11128-011-0356-5
[3]  乐明楠, 李建波, 张薇, 李斌, 赵国英, 彭进业, 章勇勤, 赵万青, 王珺. 基于计算鬼成像的目标识别模型构建、识别方法及装置[P]. 中国专利, CN111652059A. 2020-09-11.
[4]  Cheng, J. (2009) Ghost Imaging through Turbulent Atmosphere. Optics Express, 17, 7916-7921.
https://doi.org/10.1364/OE.17.007916
[5]  Zhang, P., Gong, W., Shen, X. and Han, S. (2010) Correlated Imaging through Atmospheric Turbulence. Physical Review A, 82, Article ID: 033817.
https://doi.org/10.1103/PhysRevA.82.033817
[6]  赵明, 王钰, 田芷铭, 赵美晶. 水下推扫式计算鬼成像的方法[J]. 激光与光电子学进展, 2019, 56(16): 132-136.
[7]  Erkmen, B.I. (2012) Computational Ghost Imaging for Remote Sensing. Journal of the Optical Society of America A, 29, 782-789.
https://doi.org/10.1364/JOSAA.29.000782
[8]  Le, M.N., Wang, G., Zheng, H.B., Liu, J.B., Zhou, Y. and Xu, Z. (2017) Underwater Computational Ghost Imaging. Optics Express, 25, 22859-22868.
https://doi.org/10.1364/OE.25.022859
[9]  Zhang, Q.-W., Li, W.-D., Liu, K., et al. (2019) Effect of Oceanic Turbulence on the Visibility of Underwater Ghost Imaging. Journal of the Optical Society of America A, 36, 397-402.
https://doi.org/10.1364/JOSAA.36.000397
[10]  Yin, M.-Q., Wang, L. and Zhao, S.-M. (2019) Experimental Demonstration of Influence of Underwater Turbulence on Ghost Imaging. Chinese Physics B, 28, Article ID: 094201.
https://doi.org/10.1088/1674-1056/ab33ee
[11]  Hill, R.J. (1978) Optical Propagation in Turbulent Water. Journal of the Optical Society of America, 68, 1067-1072.
https://doi.org/10.1364/JOSA.68.001067
[12]  Nikishov, V.V. and Nikishov, V.I. (2000) Spectrum of Turbu-lent Fluctuations of the Sea-Water Refraction Index. International Journal of Fluid Mechanics Research, 27, 82-98.
https://doi.org/10.1615/InterJFluidMechRes.v27.i1.70
[13]  Korotkova, O., Farwell, N. and Shchepakina, E. (2012) Light Scintillation in Oceanic Turbulence. Waves in Random and Complex Media, 22, 260-266.
https://doi.org/10.1080/17455030.2012.656731
[14]  Blanchard, D.C. and Woodcock, A.H. (1957) Bubble Formation and Modification in the Sea and Its Meteorological Significance. Tellus, 9, 145-158.
https://doi.org/10.3402/tellusa.v9i2.9094
[15]  Dombrovsky, L., Randrianalisoa, J., Baillis, D., et al. (2005) Use of Mie Theory to Analyze Experimental Data to Identify Infrared Properties of Fused Quartz Containing Bubbles. Applied Optics, 44, 7021-7031.
https://doi.org/10.1364/AO.44.007021
[16]  Hagem, R.M., Thiel, D.V., O’Keefe, S.G. and Fickenscher, T. (2012) The Effect of Air Bubbles on an Underwater Optical Communications System for Wireless Sensor Network Applications. Microwave and Optical Technology Letters, 54, 729-732.
https://doi.org/10.1002/mop.26664
[17]  Dacey, J .W. (2001) Encyclopedia of Ocean Sciences. Encyclopedia of Ocean Sciences, 2001, 131-137.
[18]  Farmer, D.M. and Lemon, D.D. (1984) The Influence of Bubbles on Ambient Noise in the Ocean at High Wind Speeds. Journal of Physical Oceanography, 14, 1762-1778.
https://doi.org/10.1175/1520-0485(1984)014<1762:TIOBOA>2.0.CO;2
[19]  Zhang, X., Lewis, M. and Johnson, B. (1998) Influence of Bubbles on Scattering of Light in the Ocean. Applied Optics, 37, 6525-6536.
https://doi.org/10.1364/AO.37.006525
[20]  Davis, G.E. (1955) Scattering of Light by an Air Bubble in Water. Journal of the Optical Society of America, 45, 572-572.
https://doi.org/10.1364/JOSA.45.000572
[21]  Jamali, M.V., et al. (2016) Statistical Distribution of Intensity Fluctuations for Underwater Wireless Optical Channels in the Presence of Air Bubbles. 2016 Iran Workshop on Communication and Information Theory (IWCIT), Tehran, 3-4 May 2016.
https://doi.org/10.1109/IWCIT.2016.7491626
[22]  Zedini, E., Oubei, H.M., Kammoun, A., et al. (2019) Unified Statistical Channel Model for Turbulence-Induced Fading in Underwater Wireless Optical Commu-nication Systems. IEEE Transactions on Communications, 67, 2893-2907.
[23]  Clemente, P., et al. (2010) Optical Encryption Based on Computational Ghost Imaging. Optics Letters, 35, 2391-2393.
https://doi.org/10.1364/OL.35.002391
[24]  Wang, K., Wang, Z., Bai, C., et al. (2020) Influence of Atmos-pheric Turbulence Channel on a Super-Resolution Ghost Imaging Transmission System Based on Plasmonic Structure Illumination Microscopy. Frontiers in Physics, 8, Article 546528.
https://doi.org/10.3389/fphy.2020.546528
[25]  Katkovnik, V. and Astola, J. (2012) Compressive Sensing Computational Ghost Imaging. Journal of the Optical Society of America A, 29, 1556-1567.
https://doi.org/10.1364/JOSAA.29.001556
[26]  Liu, Z., Tan, S., Wu, J., et al. (2016) Spectral Camera Based on Ghost Imaging via Sparsity Constraints. Scientific Reports, 6, Article No. 25718.
https://doi.org/10.1038/srep25718
[27]  Horé, A. and Ziou, D. (2010) Image Quality Metrics: PSNR vs. SSIM. 2010 20th International Conference on Pattern Recognition, Istanbul, 23-26 August 2010.
https://doi.org/10.1109/ICPR.2010.579
[28]  Wang, Z., Bovik, A.C., Sheikh, H.R. and Simoncelli, E.P. (2004) Image Quality Assessment: From Error Visibility to Structural Similarity. IEEE Transactions on Image Processing, 13, 600-612.
https://doi.org/10.1109/TIP.2003.819861
[29]  张晗. 基于深度学习的图像超分辨率重建应用初探[J]. 智能计算机与应用, 2020, 10(5): 136-138+142.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133