全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

改性多孔材料修复重金属污染土壤应用研究
Study on Application of Modified Porous Materials in Remediation of Heavy Metal Contaminated Soil

DOI: 10.12677/SD.2023.132075, PP. 727-732

Keywords: 改性多孔材料,重金属,土壤修复
Modified Porous Materials
, Heavy Metals, Soil Remediation

Full-Text   Cite this paper   Add to My Lib

Abstract:

改性多孔材料因其高性价比与优良的孔隙结构和比表面积等性质,被广泛应用于重金属污染土壤修复领域。综述了改性多孔材料修复单一及复合重金属污染土壤特性,分析了材料性质、施用量和土壤环境等因素对其修复效率的影响。从改性多孔材料物理吸附、静电作用、表面配位、离子交换、氧化还原和沉淀作用方面介绍了改性多孔材料钝化重金属的可能机制。提出了改性多孔材料在制备与应用过程中可能存在的不利影响及待解决的问题。以期为改性多孔材料在土壤修复领域的应用推广提供有益参考。
Modified porous materials have been widely used in heavy metal contaminated soil remediation because of their high cost performance and excellent pore structure and surface area. The proper-ties of modified porous materials for the remediation of single and composite heavy metal con-taminated soil were reviewed, and the effects of material properties, application amount and soil environment on the remediation efficiency were analyzed. The possible mechanism of passivation of heavy metals by modified porous materials was introduced in terms of physical adsorption, elec-trostatic interaction, surface coordination, ion exchange, REDOX and precipitation. The possible adverse effects and problems to be solved in the process of preparation and application of modified porous materials were put forward, in order to provide useful reference for the application of modified porous materials in the field of soil remediation.

References

[1]  宋佩佩, 马文静, 王军, 等. 铁改性生物炭的制备及其在重金属污染土壤修复技术中的应用进展[J]. 环境工程学报, 2022, 16(12): 4018-4036.
[2]  Wan, X.M., Li, C.Y. and Parikh, S.J. (2020) Simultaneous Removal of Arsenic, Cadmium, and Lead from Soil by Iron-Modified Magnetic Biochar. Environmental Pollution, 261, Article ID: 114157.
https://doi.org/10.1016/j.envpol.2020.114157
[3]  Li, Q.N., Liang, W.Y., Liu, F., et al. (2022) Simultaneous Immobilization of Arsenic, Lead and Cadmium by Magnesium-Aluminum Modified Biochar in Mining Soil. Journal of Environmental Management, 310, Article ID: 114792.
https://doi.org/10.1016/j.jenvman.2022.114792
[4]  潘亚男, 陈灿, 王欣, 等. 凤眼莲源多孔材料对土壤As、Hg、Cd溶出特性与化学形态的影响[J]. 环境科学学报, 2017, 37(6): 2342-2350.
[5]  Pan, H., Yang, X., Chen, H.B., et al. (2021) Pristine and Iron-Engineered Animal and Plant-Derived Biochars Enhanced Bacterial Abundance and Immobilized Arsenic and Lead in a Contaminated Soil. Science of the Total Environment, 763, Article ID: 144218.
https://doi.org/10.1016/j.scitotenv.2020.144218
[6]  马啸, 潘雨珂, 杨杰, 等. 生物炭改性及其应用研究进展[J]. 化工环保, 2022, 42(4): 386-393.
[7]  Wang, Y.M., Wang, S.W., Wang, C.Q., et al. (2020) Simultaneous Immo-bilization of Soil Cd(II) and As(V) by Fe-Modified Biochar. International Journal of Environmental Research and Public Health, 17, 827.
https://doi.org/10.3390/ijerph17030827
[8]  Zhao, L., Cao, X.D., Masek, O., et al. (2013) Heterogeneity of Biochar Properties as a Function of Feed Stock Sources and Production Temperatures. Journal of Hazardous Materials, 256, 1-9.
https://doi.org/10.1016/j.jhazmat.2013.04.015
[9]  王向前, 胡学玉, 陈窈君, 等. 生物炭及改性生物炭对水环境中重金属的吸附固定作用[J]. 环境工程, 2016, 34(12): 32-37.
[10]  Qiao, J.T., Liu, T.X., Wang, X.Q., et al. (2018) Simultaneous Alleviation of Cadmium and Arsenic Accumulation in Rice by Applying Zero-Valent Iron and Biochar to Contaminated Paddy Soils. Chemosphere, 195, 260-271.
https://doi.org/10.1016/j.chemosphere.2017.12.081
[11]  崔志文, 任艳芳, 王伟, 等. 碱和磁复合改性小麦秸秆生物炭对水体中镉的吸附特性及机制[J]. 环境科学, 2020, 41(7): 3315-3325.
[12]  Mandal, S., Pu, S.Y., Wang, X.K., et al. (2020) Hierarchical Porous Structured Polysulfide Supported nZVI/Biochar and Efficient Immobilization of Selenium in the Soil. Science of the Total Environment, 708, Article ID: 134831.
https://doi.org/10.1016/j.scitotenv.2019.134831
[13]  熊静, 郭丽莉, 李书鹏, 等. 镉砷污染土壤钝化剂配方优化及效果研究[J]. 农业环境科学学报, 2019, 38(8): 1909-1918.
[14]  KashifIrshad, M., Chen, C., Noman, A., et al. (2020) Goethite-Modified Biochar Restricts the Mobility and Transfer of Cadmium in Soil-Rice System. Chemosphere, 242, Article ID: 125152.
https://doi.org/10.1016/j.chemosphere.2019.125152
[15]  范贝贝, 赵磊, 刘建军, 等. 金属氧化物改性生物炭对镉污染土壤菠菜生长和镉积累的影响[J]. 农业环境科学学报, 2022, 41(6): 1261-1270.
[16]  吕鹏, 李莲芳, 黄晓雅.改性生物炭修复砷镉复合污染土壤研究进展[J/OL]. 环境科学: 1-20.
https://doi.org/10.13227/j.hjkx.202207032, 2022-10-25.
[17]  Gong, H.B., Zhao, L., Rui, X., et al. (2022) A Re-view of Pristine and Modified Biochar Immobilizing Typical Heavy Metals in Soil: Applications and Challenges. Journal of Hazardous Materials, 432, Article ID: 128668.
https://doi.org/10.1016/j.jhazmat.2022.128668
[18]  Da Silva Medeiros, D.C.C., et al. (2021) Pristine and Engi-neered Biochar for the Removal of Contaminants Co-Existing in Several Types of Industrial Wastewaters: A Critical Review. Science of the Total Environment, 809, Article ID: 151120.
https://doi.org/10.1016/j.scitotenv.2021.151120
[19]  Fang, J., Gao, B., Zimmerman, A.R., et al. (2016) Physically (CO2) Activated Hydrochars from Hickory and Peanut Hull: Preparation, Characterization, and Sorption of Methylene Blue, Lead, Copper, and Cadmium. RSC Advances, 6, 24906-24911.
https://doi.org/10.1039/C6RA01644H
[20]  Pincus, L.N., Rudel, H.E., Petrovic, P.V., et al. (2020) Exploring the Mechanisms of Selectivity for Environmentally Significant Oxo-Anion Removal during Water Treatment: A Review of Common Competing Oxo-Anion Sand Tools for Quantifying Selective Adsorption. Environmental Science & Technology, 54, 9769-9790.
https://doi.org/10.1021/acs.est.0c01666
[21]  毛欣宇, 翟森茂, 姜小三, 等. 不同改性生物炭对农田土壤理化性质及铅、镉钝化的影响机制研究[J/OL]. 环境工程: 1-14.
https://kns.cnki.net/kcms/detail/11.2097.X.20220803.2033.020.html, 2023-03-20.
[22]  Wang, S.S., Gao, B. and Li, Y.C. (2016) Enhanced Arsenic Removal by Biochar Modified with Nickel (Ni) and Manganese (Mn) Oxyhydroxides. Journal of Industrial Engineering Chemistry, 37, 361-365.
https://doi.org/10.1016/j.jiec.2016.03.048
[23]  Lyu, P., Li, L.F., Huang, X.Y., et al. (2022) Pre-Magnetic Bamboo Biochar Cross-Linked Ca-Mg-Al Layered Double-Hydroxide Composite: High-Efficiency Removal of As(III) and Cd(II) from Aqueous Solutions and Insight into the Mechanism of Simultaneous Purification. Science of the Total En-vironment, 823, Article ID: 153743.
https://doi.org/10.1016/j.scitotenv.2022.153743
[24]  Kurian, M. (2020) Cerium Oxide Based Materials for Water Treatment—A Review. Journal of Environmental Chemical Engineering, 8, Article ID: 104439.
https://doi.org/10.1016/j.jece.2020.104439
[25]  Yang, D., Yang, S.Y., Yuan, H.H., et al. (2021) Co-Benefits of Biochar-Supported Nanoscale Zero-Valent Iron in Simultaneously Stabilizing Soil Heavy Metals and Reducing their Bioaccessibility. Journal of Hazardous Materials, 418, Article ID: 126292.
https://doi.org/10.1016/j.jhazmat.2021.126292
[26]  Qian, L.B., Zhang, W.Y., Yan, J.C., et al. (2017) Nanoscale Zero-Valent Iron Supported by Biochars Produced at Different Temperatures: Synthesis Mechanism and Effect on Cr(VI) Removal. Environmental Pollution, 223, 153-160.
https://doi.org/10.1016/j.envpol.2016.12.077
[27]  Jiang, S.Y., Yan, L.L., Wang, R.K., et al. (2022) Recyclable Nitrogen-Doped Biochar via Low-Temperature Pyrolysis for Enhanced Lead(II) Removal. Chemosphere, 286, Article ID: 131666.
https://doi.org/10.1016/j.chemosphere.2021.131666

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133