|
基于HDBSCAN聚类算法的实例推理与规则提取
|
Abstract:
针对复杂装配对象具有结构复杂、开发周期长、装配成本高等特点导致的装配工艺编制较慢、效率低的问题,为实现装配工艺重用,在规则提取过程中,利用Apriori关联规则算法提取出满足约束参数的强关联规则,作为知识检索的条件与结论放入规则库中;在实例推理过程中,提出基于DBSCAN聚类算法快速定位与目标装配对象相似的子实例集,即与目标对象最相似的簇,缩小实例检索的范围以提高匹配的效率。结果表明,该方法使检索范围缩小了50倍,实例匹配速度明显加快。
Due to the complex assembly object’s complex structure, long development cycle and high assembly cost, the assembly process is slow and the efficiency is low. In order to realize assembly process re-use, in the process of rule extraction, the Apriori association rule algorithm is used to extract the strong association rules meeting the constraint parameters and put into the rule base as the condi-tions and conclusions of knowledge retrieval. In the process of case reasoning, the DBSCAN cluster-ing algorithm is proposed to quickly locate the sub-instance set similar to the target assembly ob-ject, that is, the cluster most similar to the target object, and narrow the scope of instance retrieval to improve the matching efficiency. The results show that the retrieval range is reduced by 50 times and the case matching speed is greatly accelerated.
[1] | 曹勇. 基于数据挖掘的工艺知识发现与重用研究[D]: [硕士学位论文]. 济南: 山东大学, 2019. |
[2] | 吴锐. 面向工艺重用的装配关键技术研究[D]: [硕士学位论文]. 长沙: 国防科学技术大学, 2008. |
[3] | 何丽瑶. 基于Apriori及XGBoost算法的道路交通事故分析研究[D]: [硕士学位论文]. 苏州: 苏州大学, 2020. |
[4] | Yu, H.F. (2021) Aprio-ri Algorithm Optimization Based on Spark Platform under Big Data. Microprocessors and Microsystems, 80, Article ID: 103528. https://doi.org/10.1016/j.micpro.2020.103528 |
[5] | 田春子, 张磊, 朱泽一, 邵晓康, 胡子悦. 基于Apriori和FP-Growth算法的学生行为分析研究[J]. 信息记录材料, 2020, 21(12): 156-159. |
[6] | 张胜文, 陆贤磊, 程德俊, 方喜峰, 官威, 李群. 基于改进Apriori算法的装配工艺规则挖掘技术[J]. 船舶工程, 2020, 42(5): 108-112. |
[7] | 崔晴洋, 梁小峰, 倪静, 李帅, 张生, 仲梁维. 基于卫星装配工艺的短文本聚类研究[J]. 软件工程, 2020, 23(4): 7-11. |
[8] | 王继业, 邓春宇, 郑亚芹, 张玉天, 刘凤魁. 基于HDBSCAN动态跟踪客户用电行为模式[J]. 供用电, 2019, 36(1): 10-16. |
[9] | 郗洋. 基于云计算的并行聚类算法研究[D]: [硕士学位论文]. 南京: 南京邮电大学, 2011. |