全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于深度强化学习的电力网–信息网–路网耦合系统韧性分析
Resilience Analysis of Power-Information- Road Network Coupling System Based on Deep Reinforcement Learning

DOI: 10.12677/MOS.2023.122136, PP. 1460-1468

Keywords: 韧性,耦合系统,韧性提升,多时间尺度,深度强化学习;Resilience, Coupling Systems, Resilience Enhancement, Multiple Time Scales, Deep Reinforcement Learning

Full-Text   Cite this paper   Add to My Lib

Abstract:

韧性作为衡量系统对于极端灾害抵御能力的指标,对于电力网–信息网–路网三网耦合系统在极端灾害背景下的最大性能运行保证具有重要意义。本文基于耦合网络的交互机理,首先建立了网间关联的网络物理模型,结合极端灾害环境下各阶段的时间承接性,提出了对应于灾害发生时段的多时间尺度韧性提升策略。其次基于所求问题的非凸、非线性特性,建立了深度强化学习求解框架。最后基于IEEE 33节点系统搭建耦合系统算例,结果显示本文方法对于耦合系统的韧性提升显著。
Resilience, as an index to measure the system’s ability to withstand extreme disasters, is of great significance to ensure the maximum performance of the coupling system of power network, infor-mation network and road network under the background of extreme disasters. In this paper, based on the interaction mechanism of coupled networks, a network physical model of inter-network cor-relation is first established. Combined with the time undertaking of each stage in extreme disaster environment, a multi-time scale toughness enhancement strategy corresponding to the disaster occurrence period is proposed. Secondly, based on the non-convex and nonlinear characteristics of the problem, a deep reinforcement learning solution framework is established. Finally, an example of coupling system is built based on IEEE 33 node system, and the results show that the proposed method can significantly improve the resilience of the coupling system.

References

[1]  陆佳政, 蒋正龙, 雷红才, 张红先, 彭继文, 李波, 方针. 湖南电网2008年冰灾事故分析[J]. 电力系统自动化, 2008(11): 16-19.
[2]  薛禹胜, 肖世杰. 综合防御高风险的小概率事件: 对日本相继天灾引发大停电及核泄漏事件的思考[J]. 电力系统自动化, 2011, 35(8): 1-11.
[3]  郭敏, 夏明超, 陈奇芳. 基于能源自组织的能源-信息-交通-社会耦合网络研究综述[J]. 中国电机工程学报, 2021, 41(16): 5521-5540.
[4]  唐文虎, 杨毅豪, 李雅晶, 陆佳政, 吴青华. 极端气象灾害下输电系统的弹性评估及其提升措施研究[J]. 中国电机工程学报, 2020, 40(7): 2244-2254+2403.
[5]  Panteli, M. and Mancarella, P. (2015) The Grid: Stronger, Bigger, Smarter?: Presenting a Con-ceptual Framework of Power System Resilience. Power & Energy Magazine IEEE, 13, 58-66.
https://doi.org/10.1109/MPE.2015.2397334
[6]  Ti, B.Z., Li, G.Y., Zhou, M. and Wang, J.X. (2022) Resilience Assessment and Improvement for Cyber-Physical Power Systems under Typhoon Disasters. IEEE Transactions on Smart Grid, 13, 783-794.
https://doi.org/10.1109/TSG.2021.3114512
[7]  别朝红, 林雁翎, 邱爱慈. 弹性电网及其恢复力的基本概念与研究展望[J]. 电力系统自动化, 2015, 39(22): 1-9.
[8]  许寅, 王颖, 和敬涵, 李晨. 多源协同的配电网多时段负荷恢复优化决策方法[J]. 电力系统自动化, 2020, 44(2): 123-131.
[9]  霍崇辉, 王淳, 陶多才, 罗晨煜, 吴潇翔, 曹佳佳. 考虑精准负荷控制的配电网供电恢复策略[J]. 电网技术, 2020, 44(10): 4020-4028.
[10]  Liang, L., Hou, Y.H., Hill, D., et al. (2018) Enhancing Resilience of Microgrids with Electric Springs. IEEE Transactions on Smart Grid, 9, 2235-2247.
[11]  葛少云, 张成昊, 刘洪, 徐正阳. 考虑微能源网支撑作用的配电网弹性提升策略[J]. 电网技术, 2019, 43(7): 2306-2317.
[12]  林丹, 刘前进, 曾广璇, 王梓耀, 余涛. 配电网信息物理系统可靠性的精细化建模与评估[J]. 电力系统自动化, 2021, 45(3): 92-101.
[13]  郁琛, 李尚轩, 谢云云, 刘韶峰, 常康. 考虑交通网与配电网信息融合的台风后配电网抢修策略优化[J]. 电力系统自动化, 2022, 46(4): 15-24.
[14]  陈健, 林咨良, 赵浩然, 吴秋伟, 宋关羽. 考虑信息耦合的电-气综合能源系统韧性优化方法[J]. 中国电机工程学报, 2020, 40(21): 6854-6864.
[15]  别朝红, 林超凡, 李更丰, 邱爱慈. 能源转型下弹性电力系统的发展与展望[J]. 中国电机工程学报, 2020, 40(9): 2735-2745.
[16]  Clark, A. and Zonouz, S. (2017) Cyber-Physical Resilience: Definition and Assess-ment Metric. IEEE Transactions on Smart Grid, 10, 1671-1684.
https://doi.org/10.1109/TSG.2017.2776279
[17]  汤奕, 李峰, 王琦, 倪明. 通信系统故障对电力系统实时负荷控制影响的量化评价方法[J]. 电力自动化设备, 2017, 37(2): 90-96.
[18]  谭跃进, 吴俊, 邓宏钟, 朱大智. 复杂网络抗毁性研究综述[J]. 系统工程, 2006, 10(1): 1-5.
[19]  张巍, 李权, 周宇球, 罗雨航, 奚培锋. 有源配电网两阶段动态应急抗灾运行策略[J]. 系统仿真学报, 2020, 32(5): 936-945.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133