|
基于SIMP法的板壳结构支撑位置拓扑优化设计
|
Abstract:
拓扑优化技术通常在具有预定支撑条件的设计域上执行,以生成最优的结构。这种预定支撑条件的设计限制了优化设计空间,提高了使用成本。然而,现有的支撑位置优化技术是有限的,大多数方法需要繁琐的程序来预先定义支持条件。本研究提出了一种基于SIMP法的板壳结构支撑位置拓扑优化设计方法,通过在允许支撑的边界处引入一层单元,该方法可以简单地在有限元模型中实现。文中给出了各种实例来验证新方法的有效性。研究表明,将基于单元的支撑位置作为设计变量可以有效地获得高效和创新的结构设计。
Topology optimization techniques are usually performed on a design domain with predetermined support conditions to generate the optimal structure. The design of this predetermined support condition limits the optimization design space and increases the use cost. However, the existing support position optimization techniques are limited, and most methods require cumbersome pro-cedures to pre-define support conditions. In this study, a topology optimization design method for the support position of plate and shell structures based on SIMP method is proposed. By introduc-ing a layer of elements at the boundary of the allowable support, this method can be simply imple-mented in the finite element model. Various examples are given to verify the effectiveness of the new method. This study shows that using the element-based support position as a design variable can effectively obtain efficient and innovative structural design.
[1] | Bends?e, M. and Kikuchi, N. (1988) Generating Optimal Topologies in Structural Design Using a Homogenization Method. Computer Methods in Applied Mechanics and Engineering, 71, 197-224.
https://doi.org/10.1016/0045-7825(88)90086-2 |
[2] | Wang, C., Zhao, Z., Zhou, M., Ole, S. and Zhang, X.J.S. (2021) A Comprehensive Review of Educational Articles on Structural and Multidisciplinary Optimization. Structural and Multidiscipli-nary Optimization, 64, 2827-2880.
https://doi.org/10.1007/s00158-021-03050-7 |
[3] | 何健, 何猛, 夏凉, 史铁林. 基于双向渐进结构优化法的柔性机构设计[J]. 机械工程学报, 2021, 57(19): 39-47. |
[4] | Sigmund, O. (2007) Morphology-Based Black and White Filters for Topology Optimization. Structural and Multidisciplinary Optimization, 33, 401-424. https://doi.org/10.1007/s00158-006-0087-x |
[5] | 董小虎, 丁晓红. 基于自适应成长法的周期性加筋结构拓扑优化设计方法[J]. 中国机械工程, 2018, 29(17): 2045-2051. |
[6] | Zhou, M., Lazarov, B.S., Wang, F., et al. (2015) Minimum Length Scale in Topology Optimization by Geometric Constraints. Computer Methods in Applied Mechanics & Engineering, 293, 266-282.
https://doi.org/10.1016/j.cma.2015.05.003 |
[7] | Jang, G.-W., Shim, H. and Kim, Y.Y. (2009) Optimization of Support Locations of Beam and Plate Structures under Self-Weight by Using a Sprung Structure Model. Journal of Mechanical Design, 131, Article ID: 021005.
https://doi.org/10.1115/1.3042154 |
[8] | Buhl, T. (2002) Simultaneous Topology Optimization of Structure and Supports. Structural and Multidisciplinary Optimization, 23, 336-346. https://doi.org/10.1007/s00158-002-0194-2 |
[9] | Zhu, J.H. and Zhang, W.H. (2006). Maximization of Structure Natural Frequency with Optimal Support Layout. Structural and Multidis-ciplinary Optimization, 31, 462-469. https://doi.org/10.1007/s00158-005-0593-2 |