|
ABB-IRB2600机器人动力学参数辨识方法研究
|
Abstract:
首先通过Lagrange法构建机器人的动力学模型,经过线性变换和动力学参数重组,获取最小惯性参数集。其次,选择傅里叶级数作为激励轨迹,结合MATLAB优化工具箱对傅里叶级数系数进行优化,从而获得最佳的激励轨迹。最后将最优的激励轨迹导入到ADAMS中进行仿真,得出相关数据,并根据最小二乘法计算出待辨识动力学参数估计值,并与理论值进行对比,计算绝对误差。结果表明:仿真实验能够获得较为理想的效果,验证参数辨识方法的正确性。
First of all, the dynamic model of the robot is built according to the Lagrange method, and the min-imum set of unbiased parameters is obtained after linear transformation and dynamic recombina-tion of parameters. Secondly, the Fourier series is chosen as the exciting trajectory, and the Fourier series coefficient is optimized in conjunction with the MATLAB optimization tools to achieve the best exciting trajectory. Finally, the best gripping trajectory is imported into ADAMS for modeling, the relevant data is obtained, and the calculated value of the known kinetic parameter is calculated by the method of least squared, and the total error is calculated by comparison with the theoretical value. The results show that by correcting the parameter identification method and verifying the parameter identification method, a more ideal effect can be achieved.
[1] | 泮求亮. 基于免疫算法和神经网络的机械臂动力学参数辨识与验证[D]: [硕士学位论文]. 杭州: 浙江大学, 2021. |
[2] | 吉阳珍. 6R工业机器人运动学及动力学关键问题研究[D]: [硕士学位论文]. 成都: 四川大学, 2021. |
[3] | 中国人工智能学会. 中国人工智能学会第9届全国学术年会论文集[M]. 北京: 北京邮电大学出版社, 2001. |
[4] | 严浩, 白瑞林, 吉峰. 一种改进的SCARA机器人动力学参数辨识方法[J]. 中国机械工程, 2017, 28(22): 2707-2713. |
[5] | Benimeli, F., Mata, V. and Valero, F. (2006) A Comparison between Direct and Indirect Dynamic Parameter Identification Methods in Industrial Ro-bots. Robotica, 24, 579-590. https://doi.org/10.1017/S0263574706002645 |
[6] | 杨永雄. 固晶机摆臂的动力学建模与运动控制系统设计[D]: [硕士学位论文]. 广州: 广东工业大学, 2022. |
[7] | Gautier, M. and Poignet, P. (2001) Extended Kal-man Filtering and Weighted Least Squares Dynamic Identification of Robot. Control Engineering Practice, 9, 1361-1372. https://doi.org/10.1016/S0967-0661(01)00105-8 |
[8] | Gautier, M. and Khalil, W. (1988) A Direct Determination of Min-imum Inertial Parameters of Robots. IEEE International Conference on Robotics and Automation, Philadelphia, 24-29 April 1988, 1682-1687. |
[9] | Atkeson, C.G., An, C.H. and Hollerbach, J.M. (1986) Estimation of Inertial Parameters of Manipulator Loads and Links. The International of Robotic Research, 5, 101-119. https://doi.org/10.1177/027836498600500306 |
[10] | Swevers, J., Ganseman, C., Tukel, D.B., et al. (1997) Optimal Robot Excitation and Identification. IEEE Transactions on Robotics and Automation, 13, 730-740. https://doi.org/10.1109/70.631234 |
[11] | 丁亚东, 陈柏, 吴洪涛. 一种工业机器人动力学参数的辨识方法[J]. 华南理工大学学报, 2015, 43(3): 49-56. |
[12] | 刘勇, 庆轩, 陈钢等. 基于多目标粒子群优化算法的自由漂浮空间机器人负载最大化轨迹优化[J]. 机器人, 2014, 36(4): 402-410. |
[13] | 吴文祥. 多自由度串联机器人关节摩擦分析与低速高精度运动控制[D]: [博士学位论文]. 杭州: 浙江大学, 2013. |
[14] | 冯利民, 俞经虎, 王延玉, 刘佳怡. 基于IRLS算法的机器人动力学参数辨识[J]. 现代制造工程, 2022, 23(4): 37-46. |
[15] | 方骏玮, 王斌锐, 谢胜龙, 任海军. 工业机器人动力学参数分步辨识与零力控制示教[J]. 机械设计与制造, 2021, 5(1): 240-244. |
[16] | 田莉莉. 串联机器人动力学特性及结构优化设计研究[D]: [硕士学位论文]. 济南: 山东大学, 2020. |
[17] | 赵京, 李玉龙. 冗余度机器人动力学容错性能[J]. 北京工业大学学报, 2011, 37(10): 1441. 1445. |
[18] | Hur, S.M., Kim, S.K., Oh, Y., et al. (2012) Joint Torque Ervo of a High Friction Robot Manipulator Based on Time-Delay Control with Feed-Forward Friction Compensation. 2012 IEEE RO-MAN: The 21st IEEE International Symposium on Robot and Human Interactive Communication, Paris, 9-13 September 2012, 37-42.
https://doi.org/10.1109/ROMAN.2012.6343728 |
[19] | 霍伟. 机器人动力学与控制[M]. 北京: 高等教育出版社, 2005: 89-121. |
[20] | Jin, J. and Gans, N. (2015) Parameter Identification for Industrial Robots with a Fast and Robust Trajectory De-sign. Robotics and Computer-Integrated Manufacturing, 31, 21-29. https://doi.org/10.1016/j.rcim.2014.06.004 |