全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

微藻在水产养殖尾水治理中的应用研究
Study on the Application of Microalgae in Aquacultural Tail Water Management

DOI: 10.12677/HJAS.2023.133032, PP. 225-233

Keywords: 微藻,水产养殖,尾水处理,菌藻共生
Microalgae
, Aquaculture, Tail Water Treatment, Ymbiosis of Bacteria and Algae

Full-Text   Cite this paper   Add to My Lib

Abstract:

响应中共中央“绿色”“可循环”的号召,水产养殖尾水的处理一直以来都是备受关注的。水产养殖过程中由于投放饲料和抗生素导致水产尾水中含有较高含量的氮磷。微藻作为一种高耐受氮磷的生物,可以吸收氮磷转化为自身的蛋白质等。同时还可以进行碳的固定,是极为适合处理水产养殖尾水的生物。现在研究热点将微藻和细菌真菌共生,处理效果优于单一的藻种。同时,微藻作为高蛋白、多糖含量也很高的生物,不但可以作为养殖鱼虾贝类的饲料,还可以作为家禽的饲料。同时还有研究指出,微藻可以用来炼制生物柴油,如果普及的话,也可以成为一种新的干净清洁能源。总的来说,用微藻处理水产养殖的尾水,前景还是十分可观的。
According to the CPC Central Committee’s call of “green” and “recyclable”, the treatment of aquacul-ture tail water has always been concerned. In the process of aquaculture, feed and antibiotics lead to higher nitrogen and phosphorus content in aquatic tail water. As a kind of organism with high tolerance to nitrogen and phosphorus, microalgae can absorb nitrogen and phosphorus into their own proteins. At the same time, it can also fix carbon, which is very suitable for the treatment of aquaculture tail water. Now the research focus is microalgae and bacteria fungi symbiosis, treatment effect is better than a single algae species. At the same time, as organisms with high protein and polysaccharide content, microalgae can not only be used as feed for aquaculture fish, shrimp and shellfish, but also as feed for poultry. It has also been suggested that microalgae could be used to make biodiesel and, if widespread, could be a new source of clean energy. In general, the prospect of using microalgae to treat aquacultural tail water is very promising.

References

[1]  Oswald, W.J., Gotaas, H.B., Golueke, C.G., et al. (1957) Algae in Waste Treatment [with Discussion]. Sewage and Industrial Wastes, 29, 437-457.
[2]  Lei, Y.-J., Tian, Y., Zhang, J., et al. (2018) Microalgae Cultivation and Nutrients Removal from Sewage Sludge after Ozonizing in Algal-Bacteria System. Ecotoxicology and Environmental Safety, 165, 107-114.
https://doi.org/10.1016/j.ecoenv.2018.08.096
[3]  刘娥. 藻菌固定及其净化水产养殖废水的效果研究[D]: [硕士学位论文]. 上海: 上海海洋大学, 2017.
[4]  巫小丹, 阮榕生, 王辉, 等. 菌藻共生系统处理废水研究现状及发展前景[J]. 环境工程, 2014, 32(3): 34-37+69.
[5]  李小霞, 解庆林. 菌藻共生系统处理污水的研究及应用前景[J]. 广西民族学院学报(自然科学版), 2006, 12(3): 112-114+117.
[6]  林东年, 叶宁, 周志锋. 芽孢杆菌对罗非鱼土池水质和浮游生物的影响[J]. 茂名学院学报, 2006, 16(4): 18-21+26.
[7]  Arora, N., Patel, A., Sartaj, K., Pruthi, P.A. and Pruthi, V. (2016) Bioremediation of Domestic and Industrial Wastewaters Integrated with Enhanced Biodiesel Production Using Novel Oleaginous Microalgae. Environmental Science and Pollution Research, 23, 20997-21007.
https://doi.org/10.1007/s11356-016-7320-y
[8]  Michelon, W., da Silva, M.L.B., Matthiensen, A., et al. (2021) Microalgae Produced during Phycoremediation of Swine Wastewater Contains Effective Bacteriostatic Compounds against Antibiotic-Resistant Bacteria. Chemosphere, 283, Article ID: 131268.
https://doi.org/10.1016/j.chemosphere.2021.131268
[9]  Mayo, A.W. (2020) Effect of Pre-Treatment of Wastewater in Hrap on Nitrogen Removal in Subsurface Flow Gravel Bed Constructed Wetland. Physics and Chemistry of the Earth, 117, Article ID: 102868.
https://doi.org/10.1016/j.pce.2020.102868
[10]  Li, R., Pan, J., Yan, M., et al. (2020) Treatment of Fracturing Wastewater Using Microalgae-Bacteria Consortium. The Canadian Journal of Chemical Engineering, 98, 484-490.
https://doi.org/10.1002/cjce.23631
[11]  孙凡蛟, 宋凤芝, 范宇成. 菌藻共生系统处理污水的影响因素及其研究进展[J]. 农村实用技术, 2019(8): 90-92.
[12]  Sun, J. and Simsek, H. (2017) Bioavailability of Wastewater Derived Dissolved Organic Nitrogen to Green Microalgae Selenastrum capricornutum, Chlamydomonas reinhardtii, and Chlo-rella vulgaris with/without Presence of Bacteria. Journal of Environmental Sciences, 57, 346-355.
https://doi.org/10.1016/j.jes.2016.12.017
[13]  Kurniawan, S.B., Abdullah, S.R.S., Othman, A.R., et al. (2021) Iso-lation and Characterisation of Bioflocculant-Producing Bacteria from Aquaculture Effluent and Its Performance in Treat-ing High Turbid Water. Journal of Water Process Engineering, 42, Article ID: 102194.
https://doi.org/10.1016/j.jwpe.2021.102194
[14]  纪东平, 赵乃乾, 吴一桂, 等. 浅析防城港市海水养殖尾水处理模式及其在水产养殖业绿色发展中的作用[J]. 中国渔业质量与标准, 2020, 10(3): 69-74.
[15]  王光辉. 海水养殖污染控制对策研究[D]: [硕士学位论文]. 青岛: 中国海洋大学, 2008.
[16]  张进凤, 李瑞伟, 刘杰凤, 等. 淡水养殖水体氨氮积累危害及生物控制的研究现状[J]. 河北渔业, 2009(6): 41-44.
[17]  岳冬冬, 吴反修, 方海, 等. 中国海水养殖业绿色发展评价研究[J]. 中国农业科技导报, 2021, 23(6): 1-12.
[18]  Lefebvre, S., Hussenot, J. and Brossard, N. (1996) Water Treatment of Land-Based Fish Farm Effluents by Outdoor Culture of Marine Diatoms. Journal of Applied Phycology, 8, 193-200.
https://doi.org/10.1007/BF02184971
[19]  Paolacci, S., Stejskal, V. and Jansen, M.A.K. (2021) Estimation of the Potential of Lemna minor for Effluent Remediation in Integrated Multi-Trophic Aquaculture Using Newly Developed Synthetic Aquaculture Wastewater. Aquaculture International, 29, 2101-2118.
https://doi.org/10.1007/s10499-021-00736-z
[20]  傅红梅, 曾维农, 付新梅. 水产养殖废水污染危害及其处理技术研究[J]. 农业与技术, 2020, 40(1): 126-127.
[21]  Lau, P.S., Tam, N.F.Y. and Wong, Y.S. (1995) Effect of Algal Density on Nutrient Removal from Primary Settled Wastewater. Environmental Pollution, 89, 59-66.
https://doi.org/10.1016/0269-7491(94)00044-E
[22]  杨明举, 吴丹, 王伟, 闵文武. 水产养殖尾水处理研究进展[J]. 农技服务, 2020, 37(9): 114-116.
[23]  Takaya, Y., Kadokura, M., Kato, T. and Tokoro, C. (2021) Removal Mechanisms of Arsenite by Coprecipitation with Ferrihydrite. Journal of Environmental Chemical Engineering, 9, Arti-cle ID: 105819.
https://doi.org/10.1016/j.jece.2021.105819
[24]  刘庆辉, 余祥勇, 张鹤千, 等. 微藻对水产养殖尾水中氮磷去除效果的研究进展——基于水产养殖尾水资源化利用角度分析[J]. 水产科技情报, 2019, 46(5): 290-295.
[25]  Wu, R.S.S. (1995) The Environmental Impact of Marine Fish Culture: Towards a Sustainable Future. Marine Pollution Bulletin, 31, 159-166.
https://doi.org/10.1016/0025-326X(95)00100-2
[26]  Przytocka-Jusiak, M., Duszota, M., Matusiak, K. and Mycielski, R. (1984) Intensive Culture of Chlorella vulgaris/AA as the Second Stage of Biological Purification of Nitrogen Industry Wastewaters. Water Research, 18, 1-7.
https://doi.org/10.1016/0043-1354(84)90040-X
[27]  马红芳, 李鑫, 胡洪营, 等. 栅藻LX1在水产养殖废水中的生长、脱氮除磷和油脂积累特性[J]. 环境科学, 2012, 33(6): 1891-1896.
[28]  李攀荣, 邹长伟, 万金保, 黄学平. 微藻在废水处理中的应用研究[J]. 工业水处理, 2016, 36(5): 5-9.
[29]  Bhuyar, P., Trejo, M., Dussadee, N., et al. (2021) Microalgae Cultivation in Wastewater Effluent from Tilapia Culture Pond for Enhanced Bioethanol Production. Water Science and Technology, 84, 2686-2694.
https://doi.org/10.2166/wst.2021.194
[30]  Ansari, F.A., Singh, P., Guldhe, A. and Bux, F. (2017) Microalgal Cul-tivation Using Aquaculture Wastewater: Integrated Biomass Generation and Nutrient Remediation. Algal Research, 21, 169-177.
https://doi.org/10.1016/j.algal.2016.11.015
[31]  de Alva, M.S., Luna-Pabello, V.M., Cadena, E. and Ortíz, E. (2013) Green Microalga Scenedesmus acutus Grown on Municipal Wastewater to Couple Nutrient Removal with Lipid Accu-mulation for Biodiesel Production. Bioresource Technology, 146, 744-748.
https://doi.org/10.1016/j.biortech.2013.07.061
[32]  刘梅, 原居林, 何海生, 等. 微藻在南美白对虾养殖废水中的生长及净化效果[J]. 应用与环境生物学报, 2018, 24(4): 866-872.
[33]  赵秀侠, 杨坤, 方婷, 等. 3种微藻在龟鳖养殖废水中的生长与脱氮除磷特性[J]. 水资源保护, 2018, 34(1): 83-87+94.
[34]  葸玉琴, 崇梅, 朱巧巧, 等. 不同氮源对混养小球藻生长和部分生化组成的影响[J]. 西北师范大学学报(自然科学版), 2015, 51(1): 82-86.
[35]  刘盼, 贾成霞, 杨慕, 等. 2种微藻对养殖水体中氨氮和亚硝态氮的净化作用[J]. 水产科学, 2018, 37(3): 389-393.
[36]  陈春云, 庄源益, 方圣琼. 小球藻对养殖废水中N、P的去除研究[J]. 海洋环境科学, 2009, 28(1): 9-11.
[37]  欧阳峥嵘, 温小斌, 耿亚红, 等. 光照强度、温度、pH、盐度对小球藻(Chlorella)光合作用的影响[J]. 武汉植物学研究, 2010, 28(1): 49-55.
[38]  吕福荣, 杨海波, 李英敏. 小球藻净化污水中氮磷能力的研究[J]. 生物学杂志, 2003, 20(2): 25-26+34.
[39]  Liu, Y., Guo, L., Gao, P., et al. (2021) Thermophilic Bacteria Combined with Alkyl Polyglucose Pretreated Mariculture Solid Wastes Using as Denitrification Carbon Source for Ma-rine Recirculating Aquaculture Wastewater Treatment. Science of the Total Environment, 792, Article ID: 148447.
https://doi.org/10.1016/j.scitotenv.2021.148447
[40]  Liu, J.-Z., Yin, J.-Y., Han, H.-F., et al. (2021) Enhancements of Lipid Productivity and Phosphorus Utilization Efficiency of Chlorella pyrenoidosa by Iron and Acetate Supplements in Actual Municipal Wastewater. Renewable Energy, 170, 927-935.
https://doi.org/10.1016/j.renene.2021.01.148

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133