全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于时空的深度学习模型感知通行时间
Spatial-Temporal Based Deep Learning Model Perceives Travel Time

DOI: 10.12677/CSA.2023.133036, PP. 378-389

Keywords: 通行时间感知,深度学习,时间–空间
Travel Time Perception
, Deep Learning, Spatial-Temporal

Full-Text   Cite this paper   Add to My Lib

Abstract:

随着国民经济的快速增长,人们的生活水平日益提高,私家车的数量不断增加,导致城市出现一系列交通拥堵问题和事故。因此,对于城市交通监控、导航、路线规划和乘车共享来说,感知给定城市路径的通行时间至关重要。以前的方法总是感知单个路径的通行时间,然后将它们相加为整个路径的通行时间。我们提出了一个基于时空的深度学习框架来感知整个路径的通行时间。更具体地说,我们使用卷积神经网络来捕获时间和空间依赖性。由于还有一些影响因素(如天气、时间、驾驶员等)影响通行时间,我们添加了一个影响因素模块来预处理数据。大量的实验证明,我们提出的模型显著优于其他已知模型。
With the rapid growth of the national economy, people’s living standards are improving day by day, and the number of private cars is increasing, leading to a series of traffic congestion problems and accidents in cities. Therefore, it is essential for urban traffic monitoring, navigation, route planning, and ride sharing to perceive the travel time of a given urban path. Previous methods always perceived the travel time of a single path, and then summed them as the travel time of the whole path. We propose a spatial-temporal-based deep learning framework to perceive the travel time of the entire path. More specifically, we use this convolutional neural network to capture both temporal and spatial dependencies. Since there are also some impact factors (such as weather, time, driver, etc.) that affect the travel time, we have added an impact factor module to preprocess the data. Extensive experiments have shown that our proposed model is significantly outperforming other known models.

References

[1]  Lv, Z., Li, J., Dong, C., Li, H. and Xu, Z. (2021) Deep Learning in the COVID-19 Epidemic: A Deep Model for Urban Traffic Revitalization Index. Data & Knowledge Engineering, 135, Article ID: 101912.
https://doi.org/10.1016/j.datak.2021.101912
[2]  Sun, H., Lv, Z., Li, J., Xu, Z., Sheng, Z. and Ma, Z. (2022) Pre-diction of Cancellation Probability of Online Car-Hailing Orders Based on Multi-Source Heterogeneous Data Fusion. Wireless Algorithms, Systems, and Applications: 17th International Conference, WASA 2022, Dalian, 24-26 November 2022, 168-180.
https://doi.org/10.1007/978-3-031-19214-2_14
[3]  Lv, Z., Li, J., Dong, C. and Xu, Z. (2021) DeepSTF: A Deep Spatial-Temporal Forecast Model of Taxi Flow. The Computer Journal.
https://doi.org/10.1093/comjnl/bxab178
[4]  Xu, Z., Lv, Z., Li, J., Sun, H. and Sheng, Z. (2022) A Novel Perspec-tive on Travel Demand Prediction Considering Natural Environmental and Socioeconomic Factors. IEEE Intelligent Transportation Systems Magazine, 15, 136-159.
https://doi.org/10.1109/MITS.2022.3162901
[5]  Piccolo, D. (1990) A Distance Measure for Classifying ARIMA Models. Journal of Time Series Analysis, 11, 153-164.
https://doi.org/10.1111/j.1467-9892.1990.tb00048.x
[6]  Valipour, M. (2015) Long-Term Runoff Study Using SARIMA and ARIMA Models in the United States. Meteorological Applications, 22, 592-598.
https://doi.org/10.1002/met.1491
[7]  Vagropoulos, S.I., Chouliaras, G.I., Kardakos, E.G., Simoglou, C.K. and Bakirtzis, A.G. (2016) Comparison of SARIMAX, SARIMA, Modified SARIMA and ANN-Based Models for Short-Term PV Generation Forecasting. 2016 IEEE International Energy Conference (ENERGYCON), Leuven, 4-8 April 2016, 1-6.
https://doi.org/10.1109/ENERGYCON.2016.7514029
[8]  Schuldt, C., Laptev, I. and Caputo, B. (2004) Recog-nizing Human Actions: A Local SVM Approach. Proceedings of the 17th International Conference on Pattern Recogni-tion, Vol. 3, 32-36.
https://doi.org/10.1109/ICPR.2004.1334462
[9]  Sun, H., Lv, Z., Li, J., Xu, Z. and Sheng, Z. (2023) Will the Order Be Canceled? Order Cancellation Probability Prediction Based on Deep Residual Model. Trans-portation Research Record.
https://doi.org/10.1177/03611981221144279
[10]  Lv, Z., Li, J., Dong, C., Wang, Y., Li, H. and Xu, Z. (2021) DeepPTP: A Deep Pedestrian Trajectory Prediction Model for Traffic Intersection. KSII Trans-actions on Internet & Information Systems, 15, 2321-2338.
https://doi.org/10.3837/tiis.2021.07.002
[11]  Ye, R., Xu, Z. and Pang, J. (2022) DDFM: A Novel Perspective on Urban Travel Demand Forecasting Based on the Ensemble Empirical Mode Decomposition and Deep Learning. Pro-ceedings of the 5th International Conference on Big Data Technologies, Qingdao, 23-25 September 2022, 373-379.
https://doi.org/10.1145/3565291.3565351
[12]  Chen, B., Guo, W., Tang, R., Xin, X., Ding, Y., He, X. and Wang, D. (2020) TGCN: Tag Graph Convolutional Network for Tag-Aware Recommendation. Proceedings of the 29th ACM International Conference on Information & Knowledge Management, Galway, 19-23 October 2020, 155-164.
https://doi.org/10.1145/3340531.3411927
[13]  Yu, B., Yin, H. and Zhu, Z. (2017) Spatio-Temporal Graph Con-volutional Networks: A Deep Learning Framework for Traffic Forecasting. Proceedings of the 27th International Joint Conference on Artificial Intelligence Main Track, Stockholm, July 13 - 19 2018, 3634-3640.
https://doi.org/10.24963/ijcai.2018/505
[14]  Lv, Z., Li, J., Xu, Z., Wang, Y. and Li, H. (2021) Parallel Computing of Spatio-Temporal Model Based on Deep Reinforcement Learning. Wireless Algorithms, Systems, and Applications: 16th International Conference, WASA 2021, Nanjing, 25-27 June 2021, 391-403.
https://doi.org/10.1007/978-3-030-85928-2_31
[15]  Lv, Z., Li, J., Dong, C. and Zhao, W. (2020) A Deep Spa-tial-Temporal Network for Vehicle Trajectory Prediction. Wireless Algorithms, Systems, and Applications: 15th Interna-tional Conference, WASA 2020, Qingdao, 13-15 September 2020, 359-369.
https://doi.org/10.1007/978-3-030-59016-1_30
[16]  Lv, Z., Li, J., Li, H., Xu, Z. and Wang, Y. (2021) Blind Travel Prediction Based on Obstacle Avoidance in Indoor Scene. Wireless Communications and Mobile Computing, 2021, Ar-ticle ID: 5536386.
https://doi.org/10.1155/2021/5536386
[17]  Xu, Z., Li, J., Lv, Z., Dong, C. and Fu, L. (2022) A Classification Method for Urban Functional Regions Based on the Transfer Rate of Empty Cars. IET Intelligent Transport Systems, 16, 133-147.
https://doi.org/10.1049/itr2.12134
[18]  Wang, Y., Zhao, A., Li, J., Lv, Z., Dong, C. and Li, H. (2022) Multi-Attribute Graph Convolution Network for Regional Traffic Flow Prediction. Neural Processing Letters, 1-27.
https://doi.org/10.1007/s11063-022-11036-9
[19]  Wang, Y., Lv, Z., Sheng, Z., Sun, H. and Zhao, A. (2022) A Deep Spatio-Temporal Meta-Learning Model for Urban Traffic Revitalization Index Prediction in the COVID-19 Pan-demic. Advanced Engineering Informatics, 53, Article ID: 101678.
https://doi.org/10.1016/j.aei.2022.101678
[20]  Xu, Z., Li, J., Lv, Z., Wang, Y., Fu, L. and Wang, X. (2021) A Graph Spatial-Temporal Model for Predicting Population Density of Key Areas. Computers & Electrical Engineering, 93, Article ID: 107235.
https://doi.org/10.1016/j.compeleceng.2021.107235
[21]  Xu, Z., Lv, Z., Li, J. and Shi, A. (2022) A Novel Ap-proach for Predicting Water Demand with Complex Patterns Based on Ensemble Learning. Water Resources Manage-ment, 36, 4293-4312.
https://doi.org/10.1007/s11269-022-03255-5
[22]  Li, H., Lv, Z., Li, J., Xu, Z., Yue, W., Sun, H. and Sheng, Z. (2022) Traffic Flow Forecasting in the COVID-19: A Deep Spatial-Temporal Model Based on Discrete Wavelet Transformation. ACM Transactions on Knowledge Discovery from Data, 17, Article No. 64.
https://doi.org/10.1145/3564753
[23]  Yuan, G., Li, J., Lv, Z., Li, Y. and Xu, Z. (2021) DDCAttNet: Road Seg-mentation Network for Remote Sensing Images. Wireless Algorithms, Systems, and Applications: 16th International Conference, WASA 2021, Nanjing, 25-27 June 2021, 457-468.
https://doi.org/10.1007/978-3-030-86130-8_36
[24]  Sheng, Z., Lv, Z., Li, J., Xu, Z., Sun, H., Liu, X. and Ye, R. (2023) Taxi Travel Time Prediction Based on Fusion of Traffic Condition Features. Computers and Electrical Engineer-ing, 105, Article ID: 108530.
https://doi.org/10.1016/j.compeleceng.2022.108530

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133