全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于迭代学习和神经网络的机械臂变长度误差跟踪
Variable Length Error Tracking of Manipulator Based on Iterative Learning and Neural Network

DOI: 10.12677/MOS.2023.122128, PP. 1363-1377

Keywords: 机械臂,迭代学习,迭代长度变化,神经网络,跟踪控制;Manipulator, Neural Network, Iterative Learning, Iterative Length Change, Tracking Control

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文考察了在任意初始状态下不确定性机械臂的轨迹跟踪问题。首先,根据预设期望轨迹、随机变量概率分布函数和虚拟误差变量,建立误差动力学系统。其次,运用虚拟控制信号和迭代学习分别补偿没有运行的区间和处理随机变化的迭代长度。然后,通过自适应神经网络逼近机械臂的不确定性和外部干扰,并通过复合能量函数证明了跟踪算法的可行性。最后,通过一个仿真例子表明了本文算法的有效性。
In this paper, trajectory tracking of uncertain manipulator under arbitrary initial conditions is in-vestigated. Firstly, the error dynamics is established according to the preset expected trajectory, the probability distribution function of random variables and the virtual error variable. Secondly, the virtual control signal and iterative learning are used to compensate the interval without opera-tion and the iteration length with random changes. Then, the uncertainty and external disturbance of the manipulator arms are approximated by an adaptive neural network, and the practicability of the tracking algorithm is inspected by a composite energy function. Finally, the simulation example is certified to display the validity of the proposed algorithm.

References

[1]  Sun, W., Su, S.F., Xia, J.W., et al. (2018) Adaptive Fuzzy Tracking Control of Flexible-Joint Robots with Full-State Con-straints. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 49, 2201-2209.
https://doi.org/10.1109/TSMC.2018.2870642
[2]  Xu, J.M., Wang, Y.D. and Sun, M.X. (2020) Iterative Learning Con-trol Based on Extracting Initial Iterative Control Signals. Acta Automatica Sinica, 46, 294-306.
https://doi.org/10.1109/ACC.2009.5160565
[3]  Hoelzle, D.J., Alleyne, A.G. and Johnson, A.J.W. (2009) Iterative Learning Control Using a Basis Signal Library. Proceedings of 2009 American Control Conference, St. Louis, MO, USA, 10-12 June 2009, 925-930.
[4]  Shi, J.T., Xu, J.X., Jun, S. and Yang, Y.H. (2020) Iterative Learning Control for Time-Varying Systems Subject to Variable Pass Lengths: Application to Robot Manipulators. IEEE Transactions on Industrial Electronics, 67, 8629-8637.
https://doi.org/10.1109/TIE.2019.2947838
[5]  Liu, G.F. and Hou, Z.S. (2019) RBFNN-Based Adaptive Iterative Learn-ing Fault-Tolerant Control for Subway Trains with Actuator Faults and Speed Constraint. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 51, 5785-5799.
https://doi.org/10.1109/TSMC.2019.2957299
[6]  Yu, Q.X. and Hou, Z.S. (2020) Adaptive Fuzzy Iterative Learning Control for High-Speed Trains with both Randomly Varying Operation Lengths and System Constraints. IEEE Transactions on Fuzzy Systems, 29, 2408-2418.
https://doi.org/10.1109/TFUZZ.2020.2999958
[7]  Xu, J. (2021) Iterative Learning Control for MIMO Nonlinear Sys-tems with Iteration-Varying Trial Lengths Using Modified Composite Energy Function Analysis. IEEE Transactions on Cy-bernetics, 51, 6080-6090.
https://doi.org/10.1109/TCYB.2020.2966625
[8]  Shen, M.Q., Wu, X.Z., et al. (2021) Iterative Learning Control of Con-strained Systems with Varying Trial Lengths under Alignment Condition. IEEE Transactions on Neural Networks and Learn-ing Systems.
https://doi.org/10.1109/TNNLS.2021.3135504
[9]  Wang, Z., Hu, C.X., Zhu, Y., et al. (2017) Newton-ILC Contouring Error Estimation and Coordinated Motion Control for Precision Multiaxis Systems with Comparative Experiments. IEEE Transactions on Industrial Electronics, 65, 1470-1480.
https://doi.org/10.1109/TIE.2017.2733455
[10]  Saab, S.S., Shen, D., Orabi, M., et al. (2021) Iterative Learning Control: Practical Implementation and Automation. IEEE Transactions on Indus-trial Electronics, 69, 1858-1866.
https://doi.org/10.1109/TIE.2021.3063866
[11]  Sun, M.X., Wu, T., Chen, L.J. and Zhang, G.F. (2017) Neural AILC for Error Tracking against Arbitrary Initial Shifts. IEEE Transactions on Neural Networks and Learning Systems, 29, 2705-2716.
https://doi.org/10.1109/TNNLS.2017.2698507
[12]  Huang, D.Q., Chen, Y., Meng, D.Y. and Sun, P.F. (2019) Adaptive Iterative Learning Control for High-Speed Train: A Multi-Agent Approach. Transactions on Systems, Man, and Cybernetics: Systems, 51, 4067-4077.
https://doi.org/10.1109/TSMC.2019.2931289
[13]  Li, X.F., Xu, J.X. and Huang, D.Q. (2014) An Iterative Learning Con-trol Approach for Linear Systems with Randomly Varying Trial Lengths. IEEE Transactions on Automatic Control, 59, 1954-1960.
https://doi.org/10.1109/TAC.2013.2294827
[14]  Iang, Y.M., Wang, Y.N., Miao, Z.Q., et al. (2020) Compo-site-Learning-Based Adaptive Neural Control for Dual-Arm Robots with Relative Motion. IEEE Transactions on Neural Net-works and Learning Systems, 33, 1010-1021.
https://doi.org/10.1109/TNNLS.2020.3037795
[15]  Zeng, C., Shen, D. and Wang, J.R. (2019) Adaptive Learning Track-ing for Robot Manipulators with Varying Trial Lengths. Journal of the Franklin Institute, 356, 5993-6014.
https://doi.org/10.1016/j.jfranklin.2019.04.034
[16]  Sun, M.X. and Yan, Q.Z. (2013) Error Tracking of Iterative Learning Control Systems. Acta Automatica Sinica, 39, 251-262.
https://doi.org/10.1016/S1874-1029(13)60027-0
[17]  Shen, D. and Xu, J.X. (2019) Adaptive Learning Control for Nonlinear Systems with Randomly Varying Iteration Lengths. IEEE Trans-actions on Neural Networks and Learning Systems, 30, 1119-1132.
https://doi.org/10.1109/TNNLS.2018.2861216
[18]  Liu, C., Ruan, X., Shen, D. and Jiang, H. (2022) Optimal Learning Control Scheme for Discrete-Time Systems with Nonuniform Trials. IEEE Transactions on Cybernetics.
[19]  Shen, D. and Xu, J.X. (2022) Adaptive Learning Control Algorithms for Infinite-Duration Tracking. IEEE Transactions on Neural Networks and Learning Systems.
[20]  吕庆. 抑制初态误差影响的自适应迭代学习控制[J]. 自动化学报, 2015, 41(7): 1365-1372.
[21]  Lin, N., Chi, R. and Huang, B. (2019) Auxiliary Predictive Compensation-Based ILC for Variable Pass Lengths. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 51, 4048-4056.
https://doi.org/10.1109/TSMC.2019.2930670

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133