|
拟杆菌对碳青霉烯类抗菌药物耐药性及耐药机制研究进展
|
Abstract:
拟杆菌是引起机会性内源性感染的重要病原体,碳青霉烯类抗菌药物是目前治疗拟杆菌感染的重要抗菌药物之一,近年来,拟杆菌对碳青霉烯类抗菌药物的耐药情况愈加严峻,在不同地区、不同人群间存在显著差异。耐碳青霉烯类拟杆菌可以通过cfiA基因介导碳青霉烯酶的生成、青霉素结合蛋白的构象改变、外膜蛋白和脂多糖的构成改变、外膜孔蛋白数量的减少或缺失及内源性外排系统突变及过度表达等导致碳青霉烯的耐药。了解耐碳青霉烯类拟杆菌的耐药性及耐药机制,对于防控耐药基因的广泛传播、指导临床用药等方面有重要价值。
Bacteroides is an important pathogen that causes opportunistic endogenous infections, and carbapenems are one of the important antibacterial drugs for the treatment of bacteroides infection. In recent years, the resistance of bacteroides to carbapenems has become increasingly severe, and there are significant differences between different regions and different populations. Carbapenem-resistant Bacteroides can induce carbapenase resistance through cfiA gene mediated generation of carbapenase, conformational change of penicillin-binding protein, composition change of outer membrane protein and lipopolysaccharide, reduction or loss of outer membrane porin, mutation and overexpression of endogenous efflux system, etc. Understanding the drug resistance and mechanism of carbapenem-resistant Bacteroides is of great value for preventing and controlling the widespread spread of drug resistance genes and guiding clinical drug use.
[1] | Salyers, A.A. (1984) Bacteroides of the Human Lower Intestinal Tract. Annual Review of Microbiology, 38, 293-313.
https://doi.org/10.1146/annurev.mi.38.100184.001453 |
[2] | Simon, G.L. and Gorbach, S.L. (1984) Intestinal Flora in Health and Disease. Gastroenterology, 86, 174-193.
https://doi.org/10.1016/0016-5085(84)90606-1 |
[3] | Reid, G. (2004) When Microbe Meets Human. Clinical In-fectious Diseases: An Official Publication of the Infectious Diseases Society of America, 39, 827-830. https://doi.org/10.1086/423387 |
[4] | Rhee, K.-J., et al. (2004) Role of Commensal Bacteria in Development of Gut-Associated Lymphoid Tissues and Preimmune Antibody Repertoire. Journal of Immunology (Baltimore, Md.: 1950), 172, 1118-1124.
https://doi.org/10.4049/jimmunol.172.2.1118 |
[5] | Wexler, H.M. (2007) Bacteroides: The Good, the Bad, and the Nitty-Gritty. Clinical Microbiology Reviews, 20, 593-621.
https://doi.org/10.1128/CMR.00008-07 |
[6] | Tzianabos, A.O., et al. (1993) Structural Features of Polysaccharides That Induce Intra-Abdominal Abscesses. Science (New York, N.Y.), 262, 416-419. https://doi.org/10.1126/science.8211161 |
[7] | Sóki, J., et al. (2006) Examination of cfiA-Mediated Carbapenem Resistance in Bacteroides fragilis Strains from a European Antibiotic Susceptibility Survey. International Journal of Antimicrobial Agents, 28, 497-502.
https://doi.org/10.1016/j.ijantimicag.2006.07.021 |
[8] | Akhi, M.T., et al. (2017) Nim Gene-Independent Metro-nidazole-Resistant Bacteroides fragilis in Surgical Site Infections. GMS Hygiene and Infection Control, 12, Doc13. |
[9] | Akhi, M.T., et al. (2015) Antibiotic Susceptibility Pattern of Aerobic and Anaerobic Bacteria Isolated from Surgical Site Infection of Hospitalized Patients. Jundishapur Journal of Microbiology, 8, e20309.
https://doi.org/10.5812/jjm.20309v2 |
[10] | Salipante, S.J., et al. (2015) Characterization of a Multidrug-Resistant, Novel Bacteroides Genomospecies. Emerging Infectious Diseases, 21, 95-98. https://doi.org/10.3201/eid2101.140662 |
[11] | Coyne, M.J., et al. (2003) Mpi Recombinase Globally Modulates the Surface Architecture of a Human Commensal Bacterium. Proceedings of the National Academy of Sciences of the United States of America, 100, 10446-10451.
https://doi.org/10.1073/pnas.1832655100 |
[12] | Krinos, C.M., et al. (2001) Extensive Surface Diversity of a Commensal Microorganism by Multiple DNA Inversions. Nature, 414, 555-558. https://doi.org/10.1038/35107092 |
[13] | Rasmussen, B.A., et al. (1993) Antimicrobial Resistance in Bacteroides. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America, 16, S390-S400.
https://doi.org/10.1093/clinids/16.Supplement_4.S390 |
[14] | Brook, I. (2002) Clinical Review: Bacteremia Caused by Anaerobic Bacteria in Children. Critical Care (London, England), 6, 205-211. https://doi.org/10.1186/cc1490 |
[15] | Wareham, D.W., et al. (2005) Anaerobic Sepsis Due to Multidrug-Resistant Bacteroides fragilis: Microbiological Cure and Clinical Response with Linezolid Therapy. Clinical Infectious Diseases, 40, e67-e68. |
[16] | Goldstein, E.J. (1996) Anaerobic Bacteremia. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America, 23, S97-S101. https://doi.org/10.1093/clinids/23.Supplement_1.S97 |
[17] | Brook, I. (2002) Microbiology of Polymicrobial Ab-scesses and Implications for Therapy. The Journal of Antimicrobial Chemotherapy, 50, 805-810. https://doi.org/10.1093/jac/dkg009 |
[18] | Nakamura, I., et al. (2017) Fatal Sepsis Caused by Multidrug-Resistant Bacteroides fragilis, Harboring a cfiA Gene and an Upstream Insertion Sequence Element, in Japan. Anaerobe, 44, 36-39.
https://doi.org/10.1016/j.anaerobe.2017.01.010 |
[19] | Snydman, D.R., et al. (2008) In Vitro Activities of Doripenem, a New Broad-Spectrum Carbapenem, against Recently Collected Clinical Anaerobic Isolates, with Emphasis on the Bacteroides fragilis Group. Antimicrobial Agents and Chemotherapy, 52, 4492-4496. https://doi.org/10.1128/AAC.00696-08 |
[20] | Goldstein, E.J.C., et al. (2008) In Vitro Activities of Doripenem and Six Comparator Drugs against 423 Aerobic and Anaerobic Bacterial Isolates from Infected Diabetic Foot Wounds. Anti-microbial Agents and Chemotherapy, 52, 761-766.
https://doi.org/10.1128/AAC.01128-07 |
[21] | Cuchural, G.J., et al. (1986) Beta-Lactamase-Mediated Imipenem Resistance in Bacteroides fragilis. Antimicrobial Agents and Chemotherapy, 30, 645-648. https://doi.org/10.1128/AAC.30.5.645 |
[22] | Bandoh, K., et al. (1991) Biochemical Properties and Purification of Metallo-Beta-Lactamase from Bacteroides fragilis. Antimicrobial Agents and Chemotherapy, 35, 371-372. https://doi.org/10.1128/AAC.35.2.371 |
[23] | Snydman, D.R., et al. (1999) Multicenter Study of in Vitro Susceptibil-ity of the Bacteroides fragilis Group, 1995 to 1996, with Comparison of Resistance Trends from 1990 to 1996. Antimicrobial Agents and Chemotherapy, 43, 2417-2422.
https://doi.org/10.1128/AAC.43.10.2417 |
[24] | Sóki, J., et al. (2004) Screening of Isolates from Faeces for Carbapenem-Resistant Bacteroides Strains; Existence of Strains with Novel Types of Resistance Mechanisms. Interna-tional Journal of Antimicrobial Agents, 24, 450-454.
https://doi.org/10.1016/j.ijantimicag.2004.06.017 |
[25] | Toprak, N.U., et al. (2012) Susceptibility Profiles and Re-sistance Genes for Carbapenems (cfiA) and Metronidazole (Nim) among Bacteroides Species in a Turkish University Hospital. Anaerobe, 18, 169-171.
https://doi.org/10.1016/j.anaerobe.2011.10.004 |
[26] | Karlowsky, J.A., et al. (2012) Prevalence of Antimicrobial Re-sistance among Clinical Isolates of Bacteroides fragilis Group in Canada in 2010-2011: CANWARD Surveillance Study. Antimicrobial Agents and Chemotherapy, 56, 1247-1252.
https://doi.org/10.1128/AAC.05823-11 |
[27] | Ferl?v-Schwensen, S.A., et al. (2017) Prevalence of Antimicrobial Resistance and the cfiA Resistance Gene in Danish Bacteroides fragilis Group Isolates since 1973. International Journal of Antimicrobial Agents, 50, 552-556.
https://doi.org/10.1016/j.ijantimicag.2017.05.007 |
[28] | Ogane, K., et al. (2020) Antimicrobial Susceptibility and Prevalence of Resistance Genes in Bacteroides fragilis Isolated from Blood Culture Bottles in Two Tertiary Care Hos-pitals in Japan. Anaerobe, 64, Article ID: 102215.
https://doi.org/10.1016/j.anaerobe.2020.102215 |
[29] | Sárvári, K.P., et al. (2018) A Multicentre Survey of the An-tibiotic Susceptibility of Clinical Bacteroides Species from Hungary. Infectious Diseases (London, England), 50, 372-380. https://doi.org/10.1080/23744235.2017.1418530 |
[30] | Gao, Q., et al. (2019) Emergence of Carbapenem Resistance in Bacteroides fragilis in China. International Journal of Antimicrobial Agents, 53, 859-863. https://doi.org/10.1016/j.ijantimicag.2019.02.017 |
[31] | Liang, C.H., et al. (2021) Trends and Correlation between Antibacterial Consumption and Carbapenem Resistance in Gram-Negative Bacteria in a Tertiary Hospital in China from 2012 to 2019. BMC Infectious Diseases, 21, 444.
https://doi.org/10.1186/s12879-021-06140-5 |
[32] | Wang, Y.Y., et al. (2020) Higher Prevalence of Mul-ti-Antimicrobial Resistant Bacteroides spp. Strains Isolated at a Tertiary Teaching Hospital in China. Infection and Drug Resistance, 13, 1537-1546.
https://doi.org/10.2147/IDR.S246318 |
[33] | Hartmeyer, G.N., et al. (2012) Multidrug-Resistant Bacteroides fragilis Group on the Rise in Europe? Journal of Medical Microbiology, 61, 1784-1788. https://doi.org/10.1099/jmm.0.049825-0 |
[34] | Pumbwe, L., et al. (2007) Genetic Analysis of Mechanisms of Mul-tidrug Resistance in a Clinical Isolate of Bacteroides fragilis. Clinical Microbiology and Infection: The Official Publi-cation of the European Society of Clinical Microbiology and Infectious Diseases, 13, 183-189. https://doi.org/10.1111/j.1469-0691.2006.01620.x |
[35] | Sherwood, J.E., et al. (2011) Multi-Drug Resistant Bacteroides fragilis Recovered from Blood and Severe Leg Wounds Caused by an Improvised Explosive Device (IED) in Afghanistan. Anaerobe, 17, 152-155.
https://doi.org/10.1016/j.anaerobe.2011.02.007 |
[36] | Hansen, K.C.M., et al. (2017) Antimicrobial Resistance in the Bacteroides fragilis Group in Faecal Samples from Patients Receiving Broad-Spectrum Antibiotics. Anaerobe, 47, 79-85. https://doi.org/10.1016/j.anaerobe.2017.04.013 |
[37] | Goldstein, E.J.C., et al. (2013) Comparative In Vitro Activity of Ceftaroline, Ceftaroline-Avibactam, and Other Antimicrobial Agents against Aerobic and Anaerobic Bacteria Cultured from Infected Diabetic Foot Wounds. Diagnostic Microbiology and Infectious Disease, 76, 347-351. https://doi.org/10.1016/j.diagmicrobio.2013.03.019 |
[38] | Sóki, J., et al. (2022) A Novel Bacteroides Metallo-β-Lactamase (MBL) and Its Gene (crxA) in Bacteroides xylanisolvens Revealed by Genomic Sequencing and Functional Analysis. The Journal of Antimicrobial Chemotherapy, 77, 1553-1556.
https://doi.org/10.1093/jac/dkac088 |
[39] | Bonomo, R.A., et al. (2018) Carbapenemase-Producing Organisms: A Global Scourge. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America, 66, 1290-1297.
https://doi.org/10.1093/cid/cix893 |
[40] | Livermore, D.M. and Woodford, N. (2000) Carbapenemases: A Problem in Waiting? Current Opinion in Microbiology, 3, 489-495. https://doi.org/10.1016/S1369-5274(00)00128-4 |
[41] | Pumbwe, L., et al. (2006) Clinical Significance of Overex-pression of Multiple RND-Family Efflux Pumps in Bacteroides fragilis Isolates. The Journal of Antimicrobial Chemo-therapy, 58, 543-548. https://doi.org/10.1093/jac/dkl278 |
[42] | Salyers, A.A. and Amábile-Cuevas, C.F. (1997) Why Are Antibiotic Resistance Genes So Resistant to Elimination? Antimicrobial Agents and Chemotherapy, 41, 2321-2325. https://doi.org/10.1128/AAC.41.11.2321 |
[43] | Yamazoe, K., et al. (1999) Distribution of the cfiA Gene among Bacteroides fragilis Strains in Japan and Relatedness of cfiA to Imipenem Resistance. Antimicrobial Agents and Chemotherapy, 43, 2808-2810.
https://doi.org/10.1128/AAC.43.11.2808 |
[44] | Rasmussen, B.A., et al. (1990) Cloning and Sequencing of the Class B Beta-Lactamase Gene (ccrA) from Bacteroides fragilis TAL3636. Antimicrobial Agents and Chemotherapy, 34, 1590-1592. https://doi.org/10.1128/AAC.34.8.1590 |
[45] | Thompson, J.S. and Malamy, M.H. (1990) Sequencing the Gene for an Imipenem-Cefoxitin-Hydrolyzing Enzyme (CfiA) from Bacteroides fragilis TAL2480 Reveals Strong Similarity between CfiA and Bacillus cereus Beta-Lactamase II. Journal of Bacteriology, 172, 2584-2593. https://doi.org/10.1128/jb.172.5.2584-2593.1990 |
[46] | Mahillon, J., Leonard, C. and Chandler, M. (1999) IS Ele-ments as Constituents of Bacterial Genomes. Research in Microbiology, 150, 675-687. https://doi.org/10.1016/S0923-2508(99)00124-2 |
[47] | Hammerschmidt, S., et al. (1996) Modulation of Cell Sur-face Sialic Acid Expression in Neisseria meningitidis via a Transposable Genetic Element. The EMBO Journal, 15, 192-198. https://doi.org/10.1002/j.1460-2075.1996.tb00347.x |
[48] | Ziebuhr, W., et al. (1999) A Novel Mechanism of Phase Variation of Virulence in Staphylococcus epidermidis: Evidence for Control of the Polysaccharide Intercellular Adhesin Synthesis by Alternating Insertion and Excision of the Insertion Sequence Element IS256. Molecular Microbiology, 32, 345-356.
https://doi.org/10.1046/j.1365-2958.1999.01353.x |
[49] | Podglajen, I., et al. (1994) Insertion of a Novel DNA Se-quence, 1S1186, Upstream of the Silent Carbapenemase Gene cfiA, Promotes Expression of Carbapenem Resistance in Clinical Isolates of Bacteroides fragilis. Molecular Microbiology, 12, 105-114. https://doi.org/10.1111/j.1365-2958.1994.tb00999.x |
[50] | Whittle, G., et al. (2002) The Role of Bacteroides Con-jugative Transposons in the Dissemination of Antibiotic Resistance Genes. Cellular and Molecular Life Sciences: CMLS, 59, 2044-2054. https://doi.org/10.1007/s000180200004 |
[51] | Edwards, R. and Read, P.N. (2000) Expression of the Carbapenemase Gene (cfiA) in Bacteroides fragilis. The Journal of Antimicrobial Chemotherapy, 46, 1009-1012. https://doi.org/10.1093/jac/46.6.1009 |
[52] | Depardieu, F., et al. (2007) Modes and Modulations of Antibiotic Resistance Gene Expression. Clinical Microbiology Reviews, 20, 79-114. https://doi.org/10.1128/CMR.00015-06 |
[53] | Rasmussen, B.A. and Kovacs, E. (1991) Identification and DNA Sequence of a New Bacteroides fragilis Insertion Sequence-Like Element. Plasmid, 25, 141-144. https://doi.org/10.1016/0147-619X(91)90027-T |
[54] | Podglajen, I., et al. (2001) Multiple Mobile Promoter Regions for the Rare Carbapenem Resistance Gene of Bacteroides fragilis. Journal of Bacteriology, 183, 3531-3535. https://doi.org/10.1128/JB.183.11.3531-3535.2001 |
[55] | Sóki, J., et al. (2004) Molecular Characterization of Imipenem-Resistant, cfiA-Positive Bacteroides fragilis Isolates from the USA, Hungary and Kuwait. Journal of Medical Microbiology, 53, 413-419.
https://doi.org/10.1099/jmm.0.05452-0 |
[56] | Ayala, J., et al. (2005) Penicillin-Binding Proteins of Bacteroides fragilis and Their Role in the Resistance to Imipenem of Clinical Isolates. Journal of Medical Microbiology, 54, 1055-1064. https://doi.org/10.1099/jmm.0.45930-0 |
[57] | Smith, C.J., et al. (1998) Genetic Elements of Bacteroides Species: A Moving Story. Plasmid, 40, 12-29.
https://doi.org/10.1006/plas.1998.1347 |
[58] | Nakano, V., et al. (2004) Plasmid-Related Beta-Lactamase Production in Bacteroides fragilis Strains. Research in Microbiology, 155, 843-846. https://doi.org/10.1016/j.resmic.2004.06.011 |
[59] | Salyers, A.A., Shoemaker, N.B., Stevens, A.M. and Li, L.Y. (1995) Conjugative Transposons: An Unusual and Diverse Set of Integrated Gene Transferelements. Microbiological Reviews, 59, 579-590.
https://doi.org/10.1128/mr.59.4.579-590.1995 |
[60] | Georgopapadakou, N.H., Smith, S.A. and Sykes, R.B. (1983) Penicillin-Binding Proteins in Bacteroides fragilis. The Journal of Antibiotics (Tokyo), 36, 907-910. https://doi.org/10.7164/antibiotics.36.907 |
[61] | Fernández-Cuenca, F., et al. (2003) Relationship between Be-ta-Lactamase Production, Outer Membrane Protein and Penicillin-Binding Protein Profiles on the Activity of Carbapenems against Clinical Isolates of Acinetobacter baumannii. The Journal of Antimicrobial Chemotherapy, 51, 565-574. https://doi.org/10.1093/jac/dkg097 |
[62] | Neuwirth, C., et al. (1995) Imipenem Resistance in Clinical Isolates of Proteus mirabilis Associated with Alterations in Penicillin-Binding Proteins. The Journal of Antimicrobial Chemotherapy, 36, 335-342.
https://doi.org/10.1093/jac/36.2.335 |
[63] | Sumita, Y. and Fukasawa, M. (1995) Potent Activity of Meropenem against Escherichia coli Arising from Its Simultaneous Binding to Penicillin-Binding Proteins 2 and 3. The Journal of Antimicrobial Chemotherapy, 36, 53-64.
https://doi.org/10.1093/jac/36.1.53 |
[64] | Edwards, R. and Greenwood, D. (1992) An Investigation of be-ta-Lactamases from Clinical Isolates of Bacteroides Species. Journal of Medical Microbiology, 36, 89-95. https://doi.org/10.1099/00222615-36-2-89 |
[65] | Píriz, S., et al. (2004) Relationship between Penicillin-Binding Protein Patterns and beta-Lactamases in Clinical Isolates of Bacteroides fragilis with Different Susceptibility to be-ta-Lactam Antibiotics. Journal of Medical Microbiology, 53, 213-221. https://doi.org/10.1099/jmm.0.05409-0 |
[66] | Catel-Ferreira, M., et al. (2011) Structure-Function Relationships of CarO, the Carbapenem Resistance-Associated Outer Membrane Protein of Acinetobacter baumannii. The Journal of Antimicrobial Chemotherapy, 66, 2053-2056.
https://doi.org/10.1093/jac/dkr267 |
[67] | Mussi, M.A., et al. (2007) CarO, an Acinetobacter baumannii Outer Membrane Protein Involved in Carbapenem Resistance, Is Essential for L-Ornithine Uptake. FEBS Letters, 581, 5573-5578.
https://doi.org/10.1016/j.febslet.2007.10.063 |
[68] | Odou, M.F., et al. (1998) Isolation and Characterization of a Porin-Like Protein of 45 Kilodaltons from Bacteroides fragilis. FEMS Microbiology Letters, 166, 347-354. https://doi.org/10.1111/j.1574-6968.1998.tb13911.x |
[69] | Behra-Miellet, J., et al. (2004) A Bacteroides Thetaiotamicron Porin That Could Take Part in Resistance to Beta-Lactams. International Journal of Antimicrobial Agents, 24, 135-143.
https://doi.org/10.1016/j.ijantimicag.2004.01.008 |
[70] | Sawai, T., et al. (1988) Effect of Interaction between Outer Membrane Permeability and beta-Lactamase Production on Resistance to beta-Lactam Agents in Gram-Negative Bacteria. Reviews of Infectious Diseases, 10, 761-764.
https://doi.org/10.1093/clinids/10.4.761 |
[71] | Hiruma, R., et al. (1984) The Effect of Lipopolysaccharide on Lipid Bilayer Permeability of beta-Lactam Antibiotics. FEBS Letters, 170, 268-272. https://doi.org/10.1016/0014-5793(84)81326-5 |
[72] | Yamaguchi, A., et al. (1982) Phospholipid Bilayer Permea-bility of beta-Lactam Antibiotics. The Journal of Antibiotics, 35, 1692-1699. https://doi.org/10.7164/antibiotics.35.1692 |
[73] | Cuchural, G.J., et al. (1988) Permeability to beta-Lactams in Bacteroides fragilis. The Journal of Antimicrobial Chemotherapy, 22, 785-790. https://doi.org/10.1093/jac/22.6.785 |
[74] | Edwards, R. and Greenwood, D. (1997) Distinctive Outer Membrane Protein and Lipopolysaccharide Composition of Bacteroides fragilis Strains That Produce Metallo-beta-Lactamase. Anaerobe, 3, 233-236.
https://doi.org/10.1006/anae.1997.0103 |
[75] | Khalili, Y., et al. (2019) Characterization of Carbapenem-Resistant but Cephalosporin-Susceptible Pseudomonas aeruginosa. Acta Microbiologica et Immunologica Hungarica, 66, 529-540. https://doi.org/10.1556/030.66.2019.036 |
[76] | Ni, R.T., et al. (2020) The Role of RND-Type Efflux Pumps in Multidrug-Resistant Mutants of Klebsiella pneumoniae. Scientific Reports, 10, Article No. 10876. https://doi.org/10.1038/s41598-020-67820-x |
[77] | Nikaido, H. (2011) Structure and Mechanism of RND-Type Multidrug Efflux Pumps. In: Advances in Enzymology and Related Areas of Molecular Biology, Vol. 77, John Wiley & Sons, Inc., Hoboken, 1-60.
https://doi.org/10.1002/9780470920541.ch1 |
[78] | Poole, K. and Srikumar, R. (2001) Multidrug Efflux in Pseu-domonas aeruginosa: Components, Mechanisms and Clinical Significance. Current Topics in Medicinal Chemistry, 1, 59-71. https://doi.org/10.2174/1568026013395605 |
[79] | Li, X.-Z., et al. (2015) The Challenge of Efflux-Mediated Antibiotic Resistance in Gram-Negative Bacteria. Clinical Microbiology Reviews, 28, 337-418. https://doi.org/10.1128/CMR.00117-14 |
[80] | Zgurskaya, H.I. and Nikaido, H. (2000) Multidrug Resistance Mechanisms: Drug Efflux across Two Membranes. Molecular Microbiology, 37, 219-225. https://doi.org/10.1046/j.1365-2958.2000.01926.x |
[81] | Nikaido, H. and Zgurskaya, H.I. (1999) Antibiotic Efflux Mechanisms. Current Opinion in Infectious Diseases, 12, 529-536. https://doi.org/10.1097/00001432-199912000-00001 |
[82] | Blair, J.M., et al. (2014) Multidrug Efflux Pumps in Gram-Negative Bacteria and Their Role in Antibiotic Resistance. Future Microbiology, 9, 1165-1177. https://doi.org/10.2217/fmb.14.66 |
[83] | Ueda, O., et al. (2005) Sixteen Homologs of the Mex-Type Multidrug Re-sistance Efflux Pump in Bacteroides fragilis. Antimicrobial Agents and Chemotherapy, 49, 2807-2815. https://doi.org/10.1128/AAC.49.7.2807-2815.2005 |
[84] | Pumbwe, L., et al. (2006) Efflux Pump Overexpression in Multiple-Antibiotic-Resistant Mutants of Bacteroides fragilis. Antimicrobial Agents and Chemotherapy, 50, 3150-3153. https://doi.org/10.1128/AAC.00141-06 |
[85] | Pumbwe, L., et al. (2006) Bacteroides fragilis BmeABC Efflux Systems Additively Confer Intrinsic Antimicrobial Resistance. The Journal of Antimicrobial Chemotherapy, 58, 37-46. https://doi.org/10.1093/jac/dkl202 |
[86] | Gilmore, M.S. and Ferretti, J.J. (2003) Microbiology. The Thin Line between Gut Commensal and Pathogen. Science (New York, N.Y.), 299, 1999-2002. https://doi.org/10.1126/science.1083534 |
[87] | Silva, J.O., et al. (2014) In Vitro Effect of Antibiotics on Biofilm Formation by Bacteroides fragilis Group Strains Isolated from Intestinal Microbiota of Dogs and Their Antimicrobial Susceptibility. Anaerobe, 28, 24-28.
https://doi.org/10.1016/j.anaerobe.2014.04.010 |
[88] | Amiri, R., et al. (2022) Identification of Enterotoxigenic Bacteroides fragilis in Patients with Diarrhea: A Study Targeting 16S rRNA, gyrB and nanH Genes. Anaerobe, 75, Ar-ticle ID: 102546.
https://doi.org/10.1016/j.anaerobe.2022.102546 |
[89] | Shoemaker, N.B., et al. (2001) Evidence for Extensive Re-sistance Gene Transfer among Bacteroides spp. and among Bacteroides and Other Genera in the Human Colon. Applied and Environmental Microbiology, 67, 561-568.
https://doi.org/10.1128/AEM.67.2.561-568.2001 |
[90] | Salyers, A.A., et al. (2004) Human Intestinal Bacteria as Reservoirs for Antibiotic Resistance Genes. Trends in Microbiology, 12, 412-416. https://doi.org/10.1016/j.tim.2004.07.004 |
[91] | Wang, Y.Y., et al. (2022) High Prevalence of cfiA Positive Bacteroides fragilis Isolates Collected at a Teaching Hospital in Hohhot, China. Anaerobe, 79, Article ID: 102691. https://doi.org/10.1016/j.anaerobe.2022.102691 |
[92] | Wallace, M.J., et al. (2022) Comparative Genomics of Bacteroides fragilis Group Isolates Reveals Species-Dependent Resistance Mechanisms and Validates Clinical Tools for Resistance Prediction. mBio, 13, e0360321.
https://doi.org/10.1128/mbio.03603-21 |
[93] | 喻华, 等. 肠杆菌目细菌碳青霉烯酶的实验室检测和临床报告规范专家共识(第二版) [J]. 中国感染与化疗杂志 2022, 22(4): 463-474. https://doi.org/10.16718/j.1009-7708.2022.04.014 |