|
RIPK1和肌萎缩侧索硬化症研究进展
|
Abstract:
肌萎缩侧索硬化症(Amyotrophic lateral sclerosis, ALS)是一种慢性进展的致死性疾病,受体相互作用蛋白激酶1 (Receptor-interacting protein kinase 1, RIPK1)可能是治疗ALS的关键靶点。在RIPK1介导的程序性坏死中,RIPK1的激活主要受其泛素化和磷酸化调节,其中K63泛素化和M1泛素化及其下游的磷酸化决定是否激活RIPK1以介导细胞生存或死亡。在RIPK1介导的炎症中,RIPK1通过介导炎症基因的表达或者炎症因子的转录直接促进炎症的发生,或者通过调控小胶质细胞来介导脊髓炎症微环境。因此,RIPK1可能是ALS发病关键因素。目前已有用于治疗ALS的RIPK1抑制剂进入临床试验,但是其在炎症性疾病的进一步研究中发现疗效欠佳。最近研究发现在SOD1G93A小鼠中遗传失活RIPK1并不会改善其病理和临床表现,这为以RIPK1为靶点治疗ALS提供了不同的见解。
Amyotrophic lateral sclerosis (ALS) is a chronic progressive fatal disease, and receptor-interacting protein kinase 1 (RIPK1) may be a key target for the treatment of ALS. In RIPK1-mediated pro-grammed necrosis, the activation of RIPK1 is mainly regulated by its ubiquitination and phos-phorylation. K63 ubiquitination and M1 ubiquitination and their downstream phosphorylation determine whether RIPK1 is activated to mediate cell survival or death. In RIPK1-mediated in-flammation, RIPK1 directly promotes the occurrence of inflammation by mediating the expression of inflammatory genes or the transcription of inflammatory factors, or mediates the spinal cord inflammatory microenvironment by regulating microglia. Therefore, RIPK1 is a key factor in the pathogenesis of ALS. At present, RIPK1 inhibitor used to treat ALS has entered clinical trials, but it was found to be less effective in further research on inflammatory diseases. Recent studies have found that genetic inactivation of RIPK1 in SOD1G93A mice does not improve its pathological and clinical manifestations, which may be the reason for the lack of efficacy of RIPK1 inhibitors in clinical trials.
[1] | Yuan, J., Amin, P. and Ofengeim, D. (2019) Necroptosis and RIPK1-Mediated Neuroinflammation in CNS Diseases. Nature Reviews Neuroscience, 20, 19-33. https://doi.org/10.1038/s41583-018-0093-1 |
[2] | Li, W., Shan, B., Zou, C., et al. (2022) Nuclear RIPK1 Promotes Chromatin Remodeling to Mediate Inflammatory Response. Cell Research, 32, 621-637. https://doi.org/10.1038/s41422-022-00673-3 |
[3] | Mifflin, L., Hu, Z., Dufort, C., et al. (2021) A RIPK1-Regulated Inflammatory Microglial State in Amyotrophic Lateral Sclerosis. Proceedings of the National Academy of Sciences of the United States of America, 118, e2025102118.
https://doi.org/10.1073/pnas.2025102118 |
[4] | Degterev, A., Ofengeim, D. and Yuan, J. (2019) Targeting RIPK1 for the Treatment of Human Diseases. Proceedings of the National Academy of Sciences of the United States of America, 116, 9714-9722.
https://doi.org/10.1073/pnas.1901179116 |
[5] | Najjar, M., Saleh, D., Zelic, M., et al. (2016) RIPK1 and RIPK3 Kinases Promote Cell-Death-Independent Inflammation by Toll-Like Receptor 4. Immunity, 45, 46-59. https://doi.org/10.1016/j.immuni.2016.06.007 |
[6] | Ito, Y., Ofengeim, D., Najafov, A., et al. (2016) RIPK1 Medi-ates Axonal Degeneration by Promoting Inflammation and Necroptosis in ALS. Science, 353, 603-608. https://doi.org/10.1126/science.aaf6803 |
[7] | Varfolomeev, E. and Vucic, D. (2018) Intracellular Regulation of TNF Activity in Health and Disease. Cytokine, 101, 26-32. https://doi.org/10.1016/j.cyto.2016.08.035 |
[8] | Chen, Z.J. (2012) Ubiquitination in Signaling to and Activation of IKK. Immunological Reviews, 246, 95-106.
https://doi.org/10.1111/j.1600-065X.2012.01108.x |
[9] | Shan, B., Pan, H., Najafov, A., et al. (2018) Necroptosis in Development and Diseases. Genes & Development, 32, 327-340. https://doi.org/10.1101/gad.312561.118 |
[10] | Micheau, O. and Tschopp, J. (2003) Induction of TNF Receptor I-Mediated Apoptosis via Two Sequential Signaling Complexes. Cell, 114, 181-190. https://doi.org/10.1016/S0092-8674(03)00521-X |
[11] | Bertrand, M.J., Milutinovic, S., Dickson, K.M., et al. (2008) cIAP1 and cIAP2 Facilitate Cancer Cell Survival by Functioning as E3 Ligases That Promote RIP1 Ubiquitination. Molecular Cell, 30, 689-700.
https://doi.org/10.1016/j.molcel.2008.05.014 |
[12] | Wei, R., Xu, L.W., Liu, J., et al. (2017) SPATA2 Regulates the Activation of RIPK1 by Modulating Linear Ubiquitination. Genes & Development, 31, 1162-1176. https://doi.org/10.1101/gad.299776.117 |
[13] | Kanayama, A., Seth, R.B., Sun, L., et al. (2004) TAB2 and TAB3 Activate the NF-kappaB Pathway through Binding to Polyubiquitin Chains. Molecular Cell, 15, 535-548. https://doi.org/10.1016/j.molcel.2004.08.008 |
[14] | Geng, J., Ito, Y., Shi, L., et al. (2017) Regulation of RIPK1 Activation by TAK1-Mediated Phosphorylation Dictates Apoptosis and Necroptosis. Nature Communications, 8, 359. https://doi.org/10.1038/s41467-017-00406-w |
[15] | Jaco, I., Annibaldi, A., Lalaoui, N., et al. (2017) MK2 Phos-phorylates RIPK1 to Prevent TNF-Induced Cell Death. Molecular Cell, 66, 698-710. https://doi.org/10.1016/j.molcel.2017.05.003 |
[16] | Dondelinger, Y., Jouan-Lanhouet, S., Divert, T., et al. (2015) NF-κB-Independent Role of IKKα/IKKβ in Preventing RIPK1 Kinase-Dependent Apoptotic and Necroptotic Cell Death during TNF Signaling. Molecular Cell, 60, 63-76.
https://doi.org/10.1016/j.molcel.2015.07.032 |
[17] | Wang, X., Kuang, N., Chen, Y., et al. (2021) Transplantation of Olfactory Ensheathing Cells Promotes the Therapeutic Effect of Neural Stem Cells on Spinal Cord Injury by Inhibiting Necrioptosis. Aging (Albany NY), 13, 9056-9070.
https://doi.org/10.18632/aging.202758 |
[18] | Gerlach, B., Cordier, S.M., Schmukle, A.C., et al. (2011) Linear Ubiquitination Prevents Inflammation and Regulates Immune Signalling. Nature, 471, 591-596. https://doi.org/10.1038/nature09816 |
[19] | Ikeda, F., Deribe, Y.L., Sk?nland, S.S., et al. (2011) SHARPIN Forms a Linear Ubiquitin Ligase Complex Regulating NF-κB Activity and Apoptosis. Nature, 471, 637-641. https://doi.org/10.1038/nature09814 |
[20] | Haas, T.L., Emmerich, C.H., Gerlach, B., et al. (2009) Recruitment of the Linear Ubiquitin Chain Assembly Complex Stabilizes the TNF-R1 Signaling Complex and Is Required for TNF-Mediated Gene Induction. Molecular Cell, 36, 831-844. https://doi.org/10.1016/j.molcel.2009.10.013 |
[21] | Elliott, P.R., Leske, D., Hrdinka, M., et al. (2016) SPATA2 Links CYLD to LUBAC, Activates CYLD, and Controls LUBAC Signaling. Molecular Cell, 63, 990-1005. https://doi.org/10.1016/j.molcel.2016.08.001 |
[22] | Rahighi, S., Ikeda, F., Kawasaki, M., et al. (2009) Specific Recognition of Linear Ubiquitin Chains by NEMO Is Important for NF-kappaB Activation. Cell, 136, 1098-1109. https://doi.org/10.1016/j.cell.2009.03.007 |
[23] | Hadian, K., Griesbach, R.A., Dornauer, S., et al. (2011) NF-κB Essential Modulator (NEMO) Interaction with Linear and lys-63 Ubiquitin Chains Contributes to NF-κB Activation. Journal of Biological Chemistry, 286, 26107-26117.
https://doi.org/10.1074/jbc.M111.233163 |
[24] | Nanda, S.K., Venigalla, R.K., Ordureau, A., et al. (2011) Polyubiquitin Binding to ABIN1 Is Required to Prevent Autoimmunity. Journal of Experimental Medicine, 208, 1215-1228. https://doi.org/10.1084/jem.20102177 |
[25] | Xu, D., Jin, T., Zhu, H., et al. (2018) TBK1 Suppresses RIPK1-Driven Apoptosis and Inflammation during Development and in Aging. Cell, 174, 1477-1491. https://doi.org/10.1016/j.cell.2018.07.041 |
[26] | Zhu, K., Liang, W., Ma, Z., et al. (2018) Necroptosis Promotes Cell-Autonomous Activation of Proinflammatory Cytokine gene Expression. Cell Death & Disease, 9, 500. https://doi.org/10.1038/s41419-018-0524-y |
[27] | Christofferson, D.E., Li, Y., Hitomi, J., et al. (2012) A Novel Role for RIP1 Kinase in Mediating TNFα Production. Cell Death & Disease, 3, e320. https://doi.org/10.1038/cddis.2012.64 |
[28] | McNamara, C.R., Ahuja, R., Osafo-Addo, A.D., et al. (2013) Akt Regulates TNFα Synthesis Downstream of RIP1 Kinase Activation during Necroptosis. PLOS ONE, 8, e56576. https://doi.org/10.1371/journal.pone.0056576 |
[29] | Saleh, D., Najjar, M., Zelic, M., et al. (2017) Kinase Activities of RIPK1 and RIPK3 Can Direct IFN-β Synthesis Induced by Lipopolysaccharide. The Journal of Immunology, 198, 4435-4447. https://doi.org/10.4049/jimmunol.1601717 |
[30] | Feldman, E.L., Goutman, S.A., Petri, S., et al. (2022) Amyotrophic Lateral Sclerosis. The Lancet, 400, 1363-1380.
https://doi.org/10.1016/S0140-6736(22)01272-7 |
[31] | Lafont, E., Draber, P., Rieser, E., et al. (2018) TBK1 and IKKε Prevent TNF-Induced Cell Death by RIPK1 Phosphorylation. Nature Cell Biology, 20, 1389-1399. https://doi.org/10.1038/s41556-018-0229-6 |
[32] | Weisel, K., Scott, N., Berger, S., et al. (2021) A Randomised, Placebo-Controlled Study of RIPK1 Inhibitor GSK2982772 in Patients with Active Ulcerative Colitis. BMJ Open Gas-troenterology, 8, e000680.
https://doi.org/10.1136/bmjgast-2021-000680 |
[33] | Weisel, K., Berger, S., Thorn, K., et al. (2021) A Randomized, Placebo-Controlled Experimental Medicine Study of RIPK1 Inhibitor GSK2982772 in Patients with Moderate to Severe Rheumatoid Arthritis. Arthritis Research & Therapy, 23, 85. https://doi.org/10.1186/s13075-021-02468-0 |
[34] | Weisel, K., Scott, N.E., Tompson, D.J., et al. (2017) Random-ized Clinical Study of Safety, Pharmacokinetics, and Pharmacodynamics of RIPK1 Inhibitor GSK2982772 in Healthy Volunteers. Pharmacology Research & Perspectives, 5, e00365. https://doi.org/10.1002/prp2.365 |
[35] | Vissers, M., Heuberger, J., Groeneveld, G.J., et al. (2022) Safety, Pharmacokinetics and Target Engagement of Novel RIPK1 Inhibitor SAR443060 (DNL747) for Neurodegenerative Disorders: Randomized, Placebo-Controlled, Double-Blind Phase I/Ib Studies in Healthy Subjects and Patients. Clinical and Translational Science, 15, 2010-2023.
https://doi.org/10.1111/cts.13317 |
[36] | Wang, T., Perera, N.D., Chiam, M., et al. (2020) Necroptosis Is Dispensable for Motor Neuron Degeneration in a Mouse Model of ALS. Cell Death & Differentiation, 27, 1728-1739. https://doi.org/10.1038/s41418-019-0457-8 |
[37] | Dominguez, S., Varfolomeev, E., Brendza, R., et al. (2021) Ge-netic Inactivation of RIP1 Kinase Does Not Ameliorate Disease in a Mouse Model of ALS. Cell Death & Differentiation, 28, 915-931.
https://doi.org/10.1038/s41418-020-00625-7 |