|
年龄相关性黄斑变性相关信号通路的研究进展
|
Abstract:
年龄相关性黄斑变性(AMD)是主要的致盲眼病之一,它的发病机制暂不明确,研究发现年龄,环境,生活方式,遗传等均是其危险因素。目前针对干性AMD并没有好的治疗方法,而对于湿性AMD最主要的方式也是针对新生血管的抗血管内皮生长因子(VEGF)的治疗。因此研究人员也在积极寻找AMD的发病机制,以期对于AMD有更好的预防及治疗措施。本文介绍了嘌呤能信号通路、Nrf2/Keap1信号通路、Rho/ROCK通路、线粒体自噬信号通路、Ang/Tie信号通路与AMD之间的关系,以期为AMD的治疗及预防提供新的思路。
Age-related macular degeneration (AMD) is one of the leading causes of blindness. The pathogene-sis of AMD is still unclear. Many studies have found that age, environment, lifestyle, and genetics are the risk factors. At present, there is no good treatment for dry AMD, and the main treatment for wet AMD is anti-vascular endothelial growth factor (VEGF) treatment for neovascularization. Therefore, researchers are also actively looking for the pathogenesis of AMD in order to have better prevention and treatment measures for AMD. This article reviews the relationship between purinergic signal-ing pathway, Nrf2/Keap1 signaling pathway, Rho/ROCK signaling pathway, mitautophagy signaling pathway, and Ang/Tie signaling pathway and AMD, in order to provide new ideas for the treatment and prevention of AMD.
[1] | Wong, W.L., Su, X., Li, X., et al. (2014) Global Prevalence of Age-Related Macular Degeneration and Disease Burden Projection for 2020 and 2040: A Systematic Review and Meta-Analysis. The Lancet Global Health, 2, e106-e116.
https://doi.org/10.1016/S2214-109X(13)70145-1 |
[2] | Fredholm, B.B., Chen, J.F., Cunha, R.A., Svenningsson, P. and Vaugeois, J.M. (2005) Adenosine and Brain Function. International Review of Neurobiology, 63, 191-270. https://doi.org/10.1016/S0074-7742(05)63007-3 |
[3] | North, R.A. and Barnard, E.A. (1997) Nucleotide Receptors. Current Opinion in Neurobiology, 7, 346-357.
https://doi.org/10.1016/S0959-4388(97)80062-1 |
[4] | Akhtar-Schafer, I., Wang, L., Krohne, T.U., Xu, H. and Langmann, T. (2018) Modulation of Three Key Innate Immune Pathways for the Most Common Retinal Degenerative Diseases. EMBO Molecular Medicine, 10, e8259.
https://doi.org/10.15252/emmm.201708259 |
[5] | Tovell, V.E. and Sanderson, J. (2008) Distinct P2Y Receptor Subtypes Regulate Calcium Signaling in Human Retinal Pigment Epithelial Cells. Investigative Ophthalmology & Visual Science, 49, 350-357.
https://doi.org/10.1167/iovs.07-1040 |
[6] | Pannicke, T., Frommherz, I., Biedermann, B., et al. (2014) Differential Effects of P2Y1 Deletion on Glial Activation and Survival of Photoreceptors and Amacrine Cells in the Ischemic Mouse Retina. Cell Death & Disease, 5, e1353.
https://doi.org/10.1038/cddis.2014.317 |
[7] | 胡一凡. 嘌呤能信号在干性年龄相关性黄斑变性中损伤作用的研究进展[J]. 中华实验眼科杂志, 2022, 40(1): 78-82. |
[8] | Guha, S., Baltazar, G.C., Coffey, E.E., et al. (2013) Lyso-somal Alkalinization, Lipid Oxidation, and Reduced Phagosome Clearance Triggered by Activation of the P2X7 Receptor. The FASEB Journal, 27, 4500-4509.
https://doi.org/10.1096/fj.13-236166 |
[9] | Meyer, C.H., Hotta, K., Peterson, W.M., Toth, C.A. and Jaffe, G.J. (2013) Effect of INS37217, a P2Y2 Receptor Agonist, on Experimental Retinal Detachment and Electroretinogram in Adult Rabbits. Investigative Ophthalmology & Visual Science, 43, 3567-3574. |
[10] | Zhao, Z., Chen, Y., Wang, J., et al. (2011) Age-Related Retinopathy in NRF2-Deficient Mice. PLOS ONE, 6, e19456.
https://doi.org/10.1371/journal.pone.0019456 |
[11] | Nakagami, Y. (2016) Nrf2 Is an Attractive Therapeutic Target for Retinal Diseases. Oxidative Medicine and Cellular Longevity, 2016, Article ID: 7469326. https://doi.org/10.1155/2016/7469326 |
[12] | Natoli, R. and Fernando, N. (2018) MicroRNA as Therapeutics for Age-Related Macular Degeneration. In: Ash, J., Anderson, R., LaVail, M., Bowes Rickman, C., Hollyfield, J. and Grimm, C., Eds., Retinal Degenerative Diseases. Advances in Experimental Medicine and Biology, Vol. 1074, Springer, Cham, 37-43.
https://doi.org/10.1007/978-3-319-75402-4_5 |
[13] | 刘金霞, 王钰池, 郭卓, 等. microRNA-125b通过调控Nrf2/Keap1信号通路影响光感受器细胞氧化应激[J]. 中国医科大学学报, 2021, 50(11): 976-980. |
[14] | Etienne-Manneville, S. and Hall, A. (2002) Rho GTPases in Cell Biology. Nature, 420, 629-635.
https://doi.org/10.1038/nature01148 |
[15] | Loirand, G. (2015) Rho Kinases in Health and Disease: From Basic Sci-ence to Translational Research. Pharmacological Reviews, 67, 1074-1095. https://doi.org/10.1124/pr.115.010595 |
[16] | Crosas-Molist, E., Samain, R., Kohlhammer, L., et al. (2022) Rho GTPase Signaling in Cancer Progression and Dissemination. Physiological Reviews, 102, 455-510. https://doi.org/10.1152/physrev.00045.2020 |
[17] | Bravo-Nuevo, A., Sugimoto, H., Iyer, S., et al. (2011) RhoB Loss Prevents Streptozotocin-Induced Diabetes and Ameliorates Diabetic Complications in Mice. The American Journal of Pathology, 178, 245-252.
https://doi.org/10.1016/j.ajpath.2010.11.040 |
[18] | Lu, W., Wen, J. and Chen, Z. (2020) Distinct Roles of ROCK1 and ROCK2 on the Cerebral Ischemia Injury and Subsequently Neurodegenerative Changes. Pharmacology, 105, 3-8. https://doi.org/10.1159/000502914 |
[19] | Adini, I., Rabinovitz, I., Sun, J.F., et al. (2003) RhoB Controls Akt Traf-ficking and Stage-Specific Survival of Endothelial Cells during Vascular Development. Genes & Development, 17, 2721-2732.
https://doi.org/10.1101/gad.1134603 |
[20] | Souied, E., Pulido, J. and Staurenghi, G. (2017) Autologous Induced Stem-Cell-Derived Retinal Cells for Macular Degeneration. New England Journal of Medicine, 377, 792-793. https://doi.org/10.1056/NEJMc1706274 |
[21] | Tsuji, T., Inatani, M., Tsuji, C., Cheranov, S.M. and Kadonosono, K. (2020) Oxytocin Induced Epithelium-Mesenchimal Transition through Rho-ROCK Pathway in ARPE-19 Cells, a Human Retinal Pigmental Cell Line. Tissue and Cell, 64, Article ID: 101328. https://doi.org/10.1016/j.tice.2019.101328 |
[22] | Xu, Y., Cui, K., Li, J., et al. (2020) Melatonin Attenuates Choroidal Neovascularization by Regulating Macrophage/microglia Polarization via Inhibition of RhoA/ROCK Signaling Pathway. Journal of Pineal Research, 69, e12660.
https://doi.org/10.1111/jpi.12660 |
[23] | Hollanders, K., Van Bergen, T., Kindt, N., et al. (2015) The Effect of AMA0428, a Novel and Potent ROCK Inhibitor, in a Model of Neovascular Age-Related Macular Degeneration. Inves-tigative Ophthalmology & Visual Science, 56, 1335-1348. https://doi.org/10.1167/iovs.14-15681 |
[24] | Kitahata, S., Ichikawa, H., Tanaka, Y., Inoue, T. and Kadonosono, K. (2020) Transient Rho-Associated Coiled-Coil Containing Ki-nase (ROCK) Inhibition on Human Retinal Pigment Epithelium Results in Persistent Rho/ROCK Downregulation. Bio-chemistry and Biophysics Reports, 24, Article ID: 100841. https://doi.org/10.1016/j.bbrep.2020.100841 |
[25] | Tang, K., Wang, W., Wang, Q., et al. (2015) Haplotypes of RHO Polymorphisms and Susceptibility to Age-Related Macular Degeneration. International Journal of Clinical and Experimental Pathology, 8, 3174-3179. |
[26] | Sijnave, D., Van Bergen, T., Castermans, K., et al. (2015) Inhibition of Rho-Associated Kinase Prevents Pathological Wound Healing and Neovascularization after Corneal Trauma. Cornea, 34, 1120-1129.
https://doi.org/10.1097/ICO.0000000000000493 |
[27] | Narimatsu, T., Ozawa, Y., Miyake, S., et al. (2013) Disrup-tion of Cell-Cell Junctions and Induction of Pathological Cytokines in the Retinal Pigment Epithelium of Light-Exposed Mice. Investigative Ophthalmology & Visual Science, 54, 4555-4562. https://doi.org/10.1167/iovs.12-11572 |
[28] | Karunadharma, P.P., Nordgaard, C.L., Olsen, T.W. and Ferrington, D.A. (2010) Mitochondrial DNA Damage as a Potential Mechanism for Age-Related Macular Degeneration. Investiga-tive Ophthalmology & Visual Science, 51, 5470-5479. https://doi.org/10.1167/iovs.10-5429 |
[29] | Feher, J., Kovacs, I., Artico, M., et al. (2006) Mitochondrial Alterations of Retinal Pigment Epithelium in Age-Related Macular Degenera-tion. Neurobiology of Aging, 27, 983-993. https://doi.org/10.1016/j.neurobiolaging.2005.05.012 |
[30] | Jarrett, S.G., Lin, H., Godley, B.F. and Boulton, M.E. (2008) Mitochondrial DNA Damage and Its Potential Role in Retinal Degenera-tion. Progress in Retinal and Eye Research, 27, 596-607.
https://doi.org/10.1016/j.preteyeres.2008.09.001 |
[31] | Lee, S.T., Oh, J.S., Rho, J.H., et al. (2014) Retinal Pigment Epithelial Cells Undergoing Mitotic Catastrophe Are Vulnerable to Autophagy Inhibition. Cell Death & Disease, 5, e1303. https://doi.org/10.1038/cddis.2014.266 |
[32] | Stenirri, S., Santambrogio, P., Setaccioli, M., et al. (2012) Study of FTMT and ABCA4 Genes in a Patient Affected by Age-Related Macular Degeneration: Identification and Anal-ysis of New Mutations. Clinical Chemistry and Laboratory Medicine, 50, 1021-1029. https://doi.org/10.1515/cclm-2011-0854 |
[33] | Wang, X., Yang, H., Yanagisawa, D., et al. (2016) Mitochondrial Ferritin Affects Mitochondria by Stabilizing HIF-1α in Retinal Pigment Epithelium: Implications for the Pathophysiology of Age-Related Macular Degeneration. Neurobiology of Aging, 47, 168-179. https://doi.org/10.1016/j.neurobiolaging.2016.07.025 |
[34] | Benest, A.V., Kruse, K., Savant, S., et al. (2013) Angi-opoietin-2 Is Critical for Cytokine-Induced Vascular Leakage. PLOS ONE, 8, e70459. https://doi.org/10.1371/journal.pone.0070459 |
[35] | Augustin, H., Young Koh, G., Thurston, G. and Alitalo, K. (2009) Control of Vascular Morphogenesis and Homeostasis through the Angiopoietin-Tie System. Nature Reviews Mo-lecular Cell Biology, 10, 165-177.
https://doi.org/10.1038/nrm2639 |
[36] | Nambu, H., Umeda, N., Kachi, S., et al. (2005) Angiopoietin 1 Prevents Retinal Detachment in an Aggressive Model of Proliferative Retinopathy, but Has No Effect on Established Neovascu-larization. Journal of Cellular Physiology, 204, 227-235. https://doi.org/10.1002/jcp.20292 |
[37] | Peters, S., Cree, I.A., Alexander, R., et al. (2007) Angiopoietin Modulation of Vascular Endothelial Growth Factor: Effects on Retinal Endothelial Cell Permeability. Cytokine, 40, 144-150. https://doi.org/10.1016/j.cyto.2007.09.001 |
[38] | Ma, L., Brelen, M.E., Tsujikawa, M., et al. (2017) Identification of ANGPT2 as a New Gene for Neovascular Age-Related Mac-ular Degeneration and Polypoidal Choroidal Vasculopathy in the Chinese and Japanese Populations. Investigative Oph-thalmology & Visual Science, 58, 1076-1083. https://doi.org/10.1167/iovs.16-20575 |
[39] | Otani, A., Takagi, H., Oh, H., et al. (1999) Expressions of Angiopoietins and Tie2 in Human Choroidal Neovascular Membranes. Investigative Ophthalmology & Visual Science, 40, 1912-1920. |
[40] | Lambert, N.G., Zhang, X., Rai, R.R., et al. (2016) Subretinal AAV2.COMP-Ang1 Suppresses Choroidal Neovascularization and Vascular Endothelial Growth Factor in a Murine Model of Age-Related Macular Degeneration. Experimental Eye Research, 145, 248-257. https://doi.org/10.1016/j.exer.2016.01.009 |
[41] | Kim, J., Park, J.R., Choi, J., et al. (2019) Tie2 Activation Promotes Choriocapillary Regeneration for Alleviating Neovascular Age-Related Macular Degeneration. Science Advances, 5, Arti-cle No. u6732.
https://doi.org/10.1126/sciadv.aau6732 |
[42] | Foxton, R.H., Uhles, S., Grüner, S., Revelant, F. and Ullmer, C. (2019) Efficacy of Simultaneous VEGF-A/ANG-2 Neutralization in Suppressing Spontaneous Choroidal Neovascularization. EMBO Molecular Medicine, 11, e10204.
https://doi.org/10.15252/emmm.201810204 |
[43] | Klaassen, I., de Vries, E.W., Vogels, I., et al. (2017) Identification of Proteins Associated With Clinical and Pathological Features of Proliferative Diabetic Retinopathy in Vitreous and Fi-brovascular Membranes. PLOS ONE, 12, e187304.
https://doi.org/10.1371/journal.pone.0187304 |