全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

下承式钢管混凝土拱桥吊杆在风–车联合作用下疲劳响应分析
Fatigue Response Analysis of Down-Bearing Concrete Filled Steel Tubular Arch Bridge Boom under Combined Wind-Vehicle Action

DOI: 10.12677/OJTT.2023.122016, PP. 132-144

Keywords: 桥梁工程,疲劳寿命,谐波合成法,下承式拱桥吊杆,元胞自动机
Bridge Engineering
, Fatigue Life, Harmonic Synthesis, Down-Bearing Arch Bridge Boom, Metacellular Automaton

Full-Text   Cite this paper   Add to My Lib

Abstract:

吊杆是下承拱桥最为重要受力构件之一,为分析其在随机车流和风荷载联合作用下应力循环次数、应力幅及疲劳寿命。以某下承式拱桥为工程背景,建立精细化元胞自动机模型模拟随机车流并对桥梁边吊杆影响线进行加载,然后基于谐波合成法模拟桥址处风荷载的随机脉动过程和风速时程,并根据准定常气动力理论对桥梁进行非线性抖振时程分析,分别得到随机车流和风荷载作用下吊杆应力时程,最后将两者应力叠加,采用雨流计数法将应力时程曲线进行计数处理后得到风–车联合作用下吊杆应力循环次数及应力幅,通过S-N曲线法、Palmgren-Miner线性累积损伤理论分析吊杆的疲劳寿命和等效应力幅。结果表明:1) 采用谐波合成法模拟随机风场具有较高精确性,可作为研究结构风致振动的一种模拟方法;2) 桥梁非线性抖振时程分析时,拱肋横向位移RMS值远大于竖向位移和扭转位移RMS值,该构件设计时风荷载作用不可忽视;3) 风荷载作用下吊杆应力波动较小,但波动频率极为密集,证实了吊杆属于典型高周疲劳;4) 风–车联合作用下吊杆的疲劳寿命需在随机车流单独作用下的疲劳寿命乘0.8修正系数。
The spreader bar is one of the most important stress-bearing members of a down-bearing arch bridge. In order to analyze its stress cycle number, stress amplitude and fatigue life under the combined effect of random traffic flow and wind load. Then, based on the harmonic synthesis method, we simulated the random pulsation process of wind load and wind velocity time course at the bridge site, and analyzed the nonlinear jitter time course of the bridge according to the quasi-deterministic aerodynamic theory to obtain the stress time course of the boom under the action of random traffic and wind load respectively, and finally superimposed the two Finally, the two stresses are superimposed, and the number of boom stress cycles and stress amplitude under the combined wind-vehicle action are obtained by counting the stress time course curves using the rainfall counting method, and the fatigue life and equivalent force amplitude of the boom are analyzed by S-N curve method and Palmgren-Miner linear cumulative damage theory. The results show that: 1) The simulation of random wind field by harmonic synthesis method has high accuracy and can be used as a simulation method to study the wind-induced vibration of the structure; 2) The RMS value of transverse displacement of the arch rib is much larger than the RMS value of vertical displacement and torsional displacement when the bridge is analyzed in nonlinear jitter vibration time, and the wind load effect cannot be neglected when the member is designed; 3) The stress fluctuation of the boom under the wind load is small, but the fluctuation frequency is extremely; 4) The fatigue life of the boom under the combined wind-vehicle action needs to be multiplied by 0.8 correction factor under the separate action of the random traffic.

References

[1]  张军雷, 崔海, 王海雷. 拱桥吊杆安全性加固改造方案设计研究[J]. 世界桥梁, 2021, 49(2): 101-107.
[2]  Sieniawska, R. and Sniady, P. (1990) Life Expectancy of Highway Bridges Due to Traffic Load. Journal of Sound and Vibration, 140, 31-38.
https://doi.org/10.1016/0022-460X(90)90904-E
[3]  Crespo-Minguillon, C. and Casas, J.R. (1997) A Comprehensive Traffic Load Model for Bridge Safety Checking. Structural Safety, 19, 339-359.
https://doi.org/10.1016/S0167-4730(97)00016-7
[4]  张曦霖. 新型元胞自动机交通流荷载模型及其应用[D]: [硕士学位论文]. 西安: 长安大学, 2015.
[5]  罗棋少. 基于三维流场的大跨度连续刚构桥风荷载数值模拟及抖振时域分析[D]: [硕士学位论文]. 长沙: 中南大学, 2010.
[6]  宋红红, 杨刚, 姜亚丽. 基于ANSYS的斜拉桥静风稳定性及脉动风抖振分析[J]. 地震工程与工程振动, 2019, 39(6): 83-90.
[7]  闵亚芝. 高墩大跨桥梁抖振时域分析及抖振疲劳研究[D]: [硕士学位论文]. 西安: 长安大学, 2016.
[8]  阮欣, 金泽人, 周军勇, 等. 基于多元胞模型的桥梁车流合成及荷载模拟[J]. 同济大学学报(自然科学版), 2017, 45(7): 941-947.
[9]  敬明, 邓卫, 季彦婕, 等. 更新步长和元胞尺寸对元胞自动机模型的影响[J]. 吉林大学学报(工学版), 2013, 43(2): 310-316.
[10]  周永兵, 李睿, 刘海证, 等. 基于元胞自动机的随机车流模拟与桥梁疲劳响应分析[J]. 公路交通科技, 2020, 37(5): 83-91+122.
[11]  彭麟. 开放边界条件下元胞自动机交通流模型的研究[D]: [硕士学位论文]. 桂林: 广西师范大学, 2003.
[12]  周建庭, 郝义, 沈小俊, 等. 递推迭代实测桥梁影响线原理及应用研究[J]. 公路交通科技, 2006(6): 81-84.
[13]  刘海证. 基于元胞自动机的山区低等级公路桥梁疲劳荷载谱研究[D]: [硕士学位论文]. 昆明: 昆明理工大学, 2019.
[14]  Kaimal, J.C. and Wyngaard, J.C. (1972) Spectral Characteristics of Surface-Layer Turbulence. Quarterly Journal of the Royal Meteorological Society, 98, 563-589.
https://doi.org/10.1002/qj.49709841707
[15]  Davenport, A.G. (1961) The Application of Statistical Concepts to the Wind of Structure. Proceedings of the Institution of Civil Engineers, 19, 449-472.
https://doi.org/10.1680/iicep.1961.11304
[16]  Von Karman, T. (1948) Progress in the Statistical Theory of Turbulence. Proceedings of the National Academy of Sciences of the United States of America, 34, 530-539.
https://doi.org/10.1073/pnas.34.11.530
[17]  向泽. 正交异性钢桥面板横隔板弧形切口的疲劳性能研究[D]: [硕士学位论文]. 长沙: 湖南大学, 2016.
[18]  Miner, M.A. (1945) Cumulative Damage in Fatigue. Journal of Applied Mechanics, 12, A159-A164.
https://doi.org/10.1115/1.4009458
[19]  Paulson, C. and Frank, K.H. (1983) A Fatigue Study of Prestressing Strand. ASCE.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133