全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

胃源性柠檬双面神菌的耐药和毒力全基因组分析
Whole Genome Sequencing of Janibacter melonis from the Stomach and Virulence and Antibiotic-Resistant Gene Analysis

DOI: 10.12677/ACM.2023.133580, PP. 4037-4047

Keywords: 柠檬双面神菌,全基因组,耐药性,毒力
Janibacter melonis
, Whole Genome, Drug Resistance, Virulence

Full-Text   Cite this paper   Add to My Lib

Abstract:

【目的】从基因组水平上探讨胃源性柠檬双面神菌PA32株的耐药性和致病机制。【方法】采用耐酸实验测定PA32菌株的耐酸能力,采用纸片扩散法测定PA32菌株对4种抗菌药物的敏感性,利用三代测序平台对其进行全基因组测序和组装,利用glimmer进行基因预测,利用VFDB数据库、CARD数据库进行毒力和耐药基因功能注释。【结果】耐酸实验表明,PA32菌株能够耐受pH 2的酸性环境。药敏实验表明,PA32菌株对甲硝唑耐药,对克拉霉素、四环素、左氧氟沙星均敏感。该菌株的基因组包括一条完整的环状染色体序列,染色体长度为3,459,946 bp,鸟嘌呤–胞嘧啶(GC)含量为73.1%,编码3296个基因。PA32菌株含有黏附和(或)侵袭、分泌系统和无氧呼吸相关毒力基因,以及对氟喹诺酮类、氨基糖苷类、四环素类、大环内酯类、β-内酰胺类等多种抗生素的耐药基因。【结论】胃源性柠檬双面神菌耐酸能力强,从基因组学水平分析具备致病潜力,这与其携带的多种毒力基因和耐药基因相关。
[Objective] To investigate the drug resistance and pathogenic mechanism of a Janibacter melonis strain PA32 at the genome-wide level. [Method] The acid resistance capacity of strain PA32 was de-termined by acid resistance assay. The susceptibility of PA32 strain to 4 antimicrobial agents was determined by disk diffusion method. Whole genome sequencing and assembly of PA32 were con-ducted by the three-generation sequencing platform, and gene prediction was conducted using glimmer, and functional annotation of virulence and drug resistance genes was conducted using VFDB database and CARD database. [Result] The PA32 strain could withstand the acidic environ-ment at pH 2. The PA32 strain was resistant to metronidazole, and susceptible to clarithromycin, tetracycline and levofloxacin. The complete genome sequence of PA32 comprises a 3,459,946 bp circular chromosome containing 3296 genes with the guanine-cytosine (GC) content of 73.1%. PA32 strain contained virulence genes related to adhesion, secretion system and anaerobic respiration, as well as drug resistance genes to fluoroquinolones, aminoglycosides, tetracycline, macrolides, β-lactam and other antibiotics. [Conclusion] Isolated from the stomach, J. melonis displays a strong ability of acid resistance. Comparative genomics indicate that J. melonis has pathogenic potential, which is associated with its multidrug resistance genes and virulence genes.

References

[1]  Martin, K., Schumann, P., Rainey, F.A., et al. (1997) Janibacter limosus gen. nov., sp. nov., a New Actinomycete with Meso-Diaminopimelic Acid in the Cell Wall. International Journal of Systematic Bacteriology, 47, 529-534.
https://doi.org/10.1099/00207713-47-2-529
[2]  Maaloum, M., Diop, K., Diop, A., et al. (2019) Description of Janibacter massiliensis sp. nov., Cultured from the Vaginal Discharge of a Patient with Bacterial Vaginosis. Antonie Van Leeuwenhoek, 112, 1147-1159.
https://doi.org/10.1007/s10482-019-01247-x
[3]  Worodria, W. anderson, J., Cattamanchi, A., et al. (2011) The Role of Speciation in Positive Lowenstein-Jensen Culture Isolates from a High Tuberculosis Burden Country. PLOS ONE, 6, e27017.
https://doi.org/10.1371/journal.pone.0027017
[4]  Fernández-Natal, M.I., Sáez-Nieto, J.A., Medina-Pascual, M.J., et al. (2015) First Report of Bacteremia by Janibacter terrae in Humans. Infection, 43, 103-106.
https://doi.org/10.1007/s15010-014-0672-7
[5]  Chander, A.M., Kochhar, R., Dhawan, D.K., et al. (2018) Ge-nome Sequence and Comparative Genomic Analysis of a Clinically Important Strain CD11-4 of Janibacter melonis Iso-lated from Celiac Disease Patient. Gut Pathogens, 10, 2.
https://doi.org/10.1186/s13099-018-0229-x
[6]  Lee, C.W., Rickman, B., Rogers, A.B., et al. (2008) Helicobacter pylori Eradication Prevents Progression of Gastric Cancer in Hypergastrinemic INS-GAS Mice. Cancer Research, 68, 3540-3548.
https://doi.org/10.1158/0008-5472.CAN-07-6786
[7]  Shen, Z., Dzink-Fox, J., Feng, Y., et al (2022) Gastric Non-Helicobacter pylori Urease-Positive Staphylococcus epidermidis and Streptococcus salivarius Isolated from Hu-mans Have Contrasting Effects on H. pylori-Associated Gastric Pathology and Host Immune Responses in a Murine Model of Gastric Cancer. mSphere, 7, e0077221.
https://doi.org/10.1128/msphere.00772-21
[8]  Wang, L., Xin, Y., Zhou, J., et al. (2020) Gastric Muco-sa-Associated Microbial Signatures of Early Gastric Cancer. Frontiers in Microbiology, 11, 1548.
https://doi.org/10.3389/fmicb.2020.01548
[9]  Correa, P. (1992) Human Gastric Carcinogenesis: A Multistep and Multifactorial Process—First American Cancer Society Award Lecture on Cancer Epidemiology and Prevention. Cancer Research, 52, 6735-6740.
[10]  Wang, Z., Gao, X., Zeng, R., et al. (2020) Changes of the Gastric Mucosal Microbiome Associated with Histological Stages of Gastric Carcinogenesis. Frontiers in Microbiology, 11, 997.
https://doi.org/10.3389/fmicb.2020.00997
[11]  Clinical and Laboratory Standards Institute (2018) Performance Standards for Antimicrobial Disk Susceptibility Testing. M02-A13.
[12]  Chin, C.S., Peluso, P., Sedlazeck, F.J., Nat-testad, M., et al. (2016) Phased Diploid Genome Assembly with Single-Molecule Real-Time Sequencing. Nature Meth-ods, 13, 1050-1054.
https://doi.org/10.1038/nmeth.4035
[13]  Hunt, M., Silva, N.D., Otto, T.D., et al. (2015) Cir-clator: Automated Circularization of Genome Assemblies Using Long Sequencing Reads. Genome Biology, 16, 294.
https://doi.org/10.1186/s13059-015-0849-0
[14]  Delcher, A.L., Bratke, K.A., Powers, E.C., et al. (2007) Identify-ing Bacterial Genes and Endosymbiont DNA with Glimmer. Bioinformatics, 23, 673-679.
https://doi.org/10.1093/bioinformatics/btm009
[15]  Akhter, S., Aziz, R.K. and Edwards, R.A. (2012) PhiSpy: A Novel Algorithm for Finding Prophages in Bacterial Genomes That Combines Similarity and Composition-Based Strate-gies. Nucleic Acids Research, 40, e126.
https://doi.org/10.1093/nar/gks406
[16]  Mistry, J., Finn, R.D., Eddy, S.R., et al. (2013) Challenges in Homology Search: HMMER3 and Convergent Evolution of Coiled-Coil Regions. Nucleic Acids Research, 41, e121.
https://doi.org/10.1093/nar/gkt263
[17]  Chen, L., Yang, J., Yu, J., et al. (2005) VFDB: A Reference Database for Bacterial Virulence Factors. Nucleic Acids Research, 33, D325-D328.
https://doi.org/10.1093/nar/gki008
[18]  Tanida, S., Joh, T., Itoh, K., et al. (2004) The Mechanism of Cleavage of EGFR Ligands Induced by Inflammatory Cytokines in Gastric Cancer Cells. Gastroenterology, 127, 559-569.
https://doi.org/10.1053/j.gastro.2004.05.017
[19]  Smith, I. (2003) Mycobacterium tuberculosis Pathogenesis and Molecular Determinants of Virulence. Clinical Microbiology Reviews, 16, 463-496.
https://doi.org/10.1128/CMR.16.3.463-496.2003
[20]  Barel, M., Hovanessian, A.G., Meibom, K., et al. (2008) A Novel Receptor-Ligand Pathway for Entry of Francisella tularensis in Monocyte-Like THP-1 Cells: Interaction between Surface Nucleolin and Bacterial Elongation Factor Tu. BMC Microbiology, 8, 145.
https://doi.org/10.1186/1471-2180-8-145
[21]  Péchiné, S., Hennequin, C., Boursier, C., et al. (2013) Immunization Using GroEL Decreases Clostridium difficile Intestinal Colonization. PLOS ONE, 8, e81112.
https://doi.org/10.1371/journal.pone.0081112
[22]  Seidler, K.A. and Seidler, N.W. (2013) Role of Extracellular GAPDH in Streptococcus pyogenes Virulence. Missouri Medicine, 110, 236-240.
[23]  Zhao, Q., Jin, M., Zhou, Z., et al. (2020) Complete Genome Sequence of Janibacter melonis M714, a Janus-Faced Bacterium with both Human Health Impact and Industrial Applications. Current Microbiology, 77, 1883-1889.
https://doi.org/10.1007/s00284-020-01951-2

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133