|
含银钛合金的抗菌性能研究进展
|
Abstract:
钛合金以其优异的性能广泛应用于包括骨科在内的多个临床研究方向,钛合金材料整体性能进一步的提升,使得钛合金内植物相关感染成为亟待解决的问题。临床治疗内植物相关感染通常存在滞后性,因此通过赋予钛合金一定的抗菌性能以预防游离细菌的入侵、粘附避免感染的发生。添加抗菌金属银使钛合金具有抗菌性能是目前研究的热点,因此,本文将以含银钛合金的抗菌性能研究为重点进行详细论述。
Titanium alloys are widely used in several clinical research directions including orthopedics for their excellent properties, and with the further improvement of the overall performance of titanium alloy materials, it makes titanium alloy endophyte-associated infections an urgent problem. Clinical treatment of endophyte-associated infections usually has a lag, so titanium alloys are given certain antimicrobial properties to prevent the invasion of free bacteria, adhesion to avoid the occurrence of infection. The addition of silver as an antimicrobial metal to make titanium alloys with antimi-crobial properties is a hot topic of research, therefore, this paper will focus on the antimicrobial properties of silver-containing titanium alloys for detailed discussion.
[1] | Zhang, Y., Chu, K., He, S., et al. (2020) Fabrication of High Strength, Antibacterial and Biocompatible Ti-5Mo-5Ag Al-loy for Medical and Surgical Implant Applications. Materials Science and Engineering: C, 106, Article ID: 110165.
https://doi.org/10.1016/j.msec.2019.110165 |
[2] | Perren, S.M., Regazzoni, P. and Fernandez, A.A. (2017) How to Choose between the Implant Materials Steel and Titanium in Orthopedic Trauma Surgery: Part 2-Biological Aspects. Acta Chirurgiae Orthopaedicae et Traumatologiae Cechoslovaca, 84, 85-90. |
[3] | Kaur, M. and Singh, K. (2019) Review on Titanium and Titanium Based Alloys as Biomaterials for Orthopaedic Applications. Materials Science and Engineering: C, 102, 844-862. https://doi.org/10.1016/j.msec.2019.04.064 |
[4] | Zhang, Y., Wang, J., Wang, P., et al. (2013) Low Elastic Modulus Contributes to the Osteointegration of Titanium Alloy Plug. Journal of Biomedical Materials Re-search Part B: Applied Biomaterials, 101, 584-590.
https://doi.org/10.1002/jbm.b.32860 |
[5] | Wang, L., Zhou, W., Yu, Z., et al. (2021) An in Vitro Evaluation of the Hierarchical Micro/Nanoporous Structure of a Ti3Zr2Sn3Mo25Nb Alloy after Surface Dealloying. ACS Applied Materi-als & Interfaces, 13, 15017-15030.
https://doi.org/10.1021/acsami.1c02140 |
[6] | Sahal, G., Nasseri, B., Bilkay, I.S. and Piskin, E. (2015) Anti-Biofilm Effect of Nanometer Scale Silver (NmSAg) Coatings on Glass and Polystyrene Surfaces against P. Mirabilis, C. Glabrata and C. Tropicalis Strains. Journal of Applied Biomaterials & Functional Materials, 13, 351-355. https://doi.org/10.5301/jabfm.5000248 |
[7] | Jiang, N., Wang, B.-W., Chai, Y.-M., et al. (2019) Chinese Expert Consensus on Diagnosis and Treatment of Infection after Fracture Fixation. Injury, 50, 1952-1958. https://doi.org/10.1016/j.injury.2019.08.002 |
[8] | Zhu, C., He, N., Cheng, T., et al. (2013) Ultrasound-Targeted Microbubble Destruction Enhances Human β-Defensin 3 Activity against Antibiotic-Resistant Staphylococcus Biofilms. Inflammation, 36, 983-996.
https://doi.org/10.1007/s10753-013-9630-2 |
[9] | Wang, R., Shi, M., Xu, F., et al. (2020) Graphdiyne-Modified TiO2 Nanofibers With Osteoinductive and Enhanced Photocatalytic Antibacterial Activities to Prevent Implant Infection. Nature Communications, 11, Article No. 4465.
https://doi.org/10.1038/s41467-020-18267-1 |
[10] | Flemming, H.-C., Wingender, J., Szewzyk, U., et al. Biofilms: An Emergent Form of Bacterial Life. Nature Reviews Microbiology, 14, 563-575. https://doi.org/10.1038/nrmicro.2016.94 |
[11] | H?iby, N., Bjarnsholt, T., Givskov, M., Molin, S. and Ciofu, O. (2010) Antibiotic Resistance of Bacterial Biofilms. International Journal of Antimicrobial Agents, 35, 322-332. https://doi.org/10.1016/j.ijantimicag.2009.12.011 |
[12] | Koo, H., Allan, R.N., Howlin, R.P., Stoodley, P. and Hall-Stoodley, L. (2017) Targeting Microbial Biofilms: Current and Prospective Therapeutic Strategies. Nature Reviews Microbiology, 15, 740-755.
https://doi.org/10.1038/nrmicro.2017.99 |
[13] | Chopra, D., Gulati, K. and Ivanovski, S. (2021) Understanding and Optimizing the Antibacterial Functions of Anodized Nano-Engineered Titanium Implants. Acta Biomaterialia, 127, 80-101.
https://doi.org/10.1016/j.actbio.2021.03.027 |
[14] | Zhang, D., Liu, Y., Liu, Z. and Wang, Q. (2020) Advances in Antibacterial Functionalized Coatings on Mg and Its Alloys for Medical Use—A Review. Coatings, 10, Article No. 828. https://doi.org/10.3390/coatings10090828 |
[15] | Shi, A., Zhu, C., Fu, S., et al. (2020) What Controls the Antibacte-rial Activity of Ti-Ag Alloy, Ag Ion or Ti2Ag Particles? Materials Science and Engineering: C, 109, Article ID: 110548. https://doi.org/10.1016/j.msec.2019.110548 |
[16] | Lei, Z., Zhang, H., Zhang, E., et al. (2018) Antibacterial Activities and Biocompatibilities of Ti-Ag Alloys Prepared by Spark Plasma Sintering and Acid Etching. Materials Science and Engineering: C, 92, 121-131.
https://doi.org/10.1016/j.msec.2018.06.024 |
[17] | Lee, J.H., Kwon, J.S., Moon, S.K., et al. (2016) Titanium-Silver Alloy Miniplates for Mandibular Fixation: In Vitro and In Vivo Study. Journal of Oral and Maxillofacial Surgery, 74, 1622.e1-1622.e12.
https://doi.org/10.1016/j.joms.2016.04.010 |
[18] | Nakajo, K., Takahashi, M., Kikuchi, M., et al. (2014) Inhibitory Effect of Ti-Ag Alloy on Artificial Biofilm Formation. Dental Materials Journal, 33, 389-393. https://doi.org/10.4012/dmj.2013-334 |
[19] | Maharubin, S., Hu, Y., Sooriyaarachchi, D., Cong, W. and Tan, G.Z. (2019) Laser Engineered Net Shaping of Antimicrobial and Biocompatible Titanium-Silver Alloys. Materials Science and Engineering: C, 105, Article ID: 110059.
https://doi.org/10.1016/j.msec.2019.110059 |
[20] | Diez-Escudero, A., Carlsson, E., Andersson, B., J?rhult, J.D. and Hailer, N.P. (2022) Trabecular Titanium for Orthopedic Applications: Balancing Antimicrobial with Osteoconductive Properties by Varying Silver Contents. ACS Applied Materials & Interfaces, 14, 41751-41763. https://doi.org/10.1021/acsami.2c11139 |
[21] | Togawa, G., Takahashi, M., Tada, H. and Takada, Y. (2022) Devel-opment of Ternary Ti-Ag-Cu Alloys with Excellent Mechanical Properties and Antibiofilm Activity. Materials, 15, Arti-cle No. 9011. https://doi.org/10.3390/ma15249011 |
[22] | Rashid, S., Sebastiani, M., Mughal, M.Z., et al. (2021) In-fluence of the Silver Content on Mechanical Properties of Ti-Cu-Ag Thin Films. Nanomaterials, 11, Article No. 435. https://doi.org/10.3390/nano11020435 |
[23] | Kikuchi, M., Takahashi, M. and Okuno, O. (2006) Elastic Moduli of Cast Ti-Au, Ti-Ag, and Ti-Cu Alloys. Dental Materials, 22, 641-646. https://doi.org/10.1016/j.dental.2005.05.015 |
[24] | Sobolev, A., Valkov, A., Kossenko, A., et al. (2019) Bioactive Coating on Ti Alloy with High Osseointegration and Antibacterial Ag Nanoparticles. ACS Applied Materials & Interfaces, 11, 39534-39544.
https://doi.org/10.1021/acsami.9b13849 |
[25] | Li, B., Hao, J., Min, Y., et al. (2015) Biological Properties of Nanostructured Ti Incorporated with Ca, P and Ag by Electrochemical Method. Materials Science and Engineering: C, 51, 80-86. https://doi.org/10.1016/j.msec.2015.02.036 |
[26] | Yu, S., Guo, D., Han, J., et al. (2020) Enhancing Anti-bacterial Performance and Biocompatibility of Pure Titanium by a Two-Step Electrochemical Surface Coating. ACS Ap-plied Materials & Interfaces, 12, 44433-44446.
https://doi.org/10.1021/acsami.0c10032 |
[27] | Zhang, Y.-Y., Zhu, Y., Lu, D.-Z., et al. (2021) Evaluation of Osteo-genic and Antibacterial Properties of Strontium/Silver-Containing Porous TiO2 Coatings Prepared by Micro-Arc Oxida-tion. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 109, 505-516. https://doi.org/10.1002/jbm.b.34719 |
[28] | He, X., Zhang, X., Bai, L., et al. (2016) Antibacterial Ability and Osteo-genic Activity of Porous Sr/Ag-Containing TiO2 Coatings. Biomedical Materials, 11, Article ID: 045008. https://doi.org/10.1088/1748-6041/11/4/045008 |
[29] | Putra, N.E., Leeflang, M.A., Ducret, V., et al. (2022) Pre-venting Antibiotic-Resistant Infections: Additively Manufactured Porous Ti6Al4V Biofunctionalized with Ag and Fe Nanoparticles. International Journal of Molecular Sciences, 23, Article No. 13239. https://doi.org/10.3390/ijms232113239 |
[30] | van Hengel, I.A.J., Tierolf, M., Valerio, V.P.M., et al. (2020) Self-Defending Additively Manufactured Bone Implants Bearing Silver and Copper Nanoparticles. Journal of Materials Chemistry B, 8, 1589-1602.
https://doi.org/10.1039/C9TB02434D |
[31] | Zhang, Y., Dong, C., Yang, S., et al. (2018) Enhanced Silver Loaded Antibacterial Titanium Implant Coating With Novel Hierarchical Effect. Journal of Biomaterials Applications, 32, 1289-1299.
https://doi.org/10.1177/0885328218755538 |
[32] | Zhang, Y., Wang, F., Huang, Q., et al. (2020) Layer-by-Layer Immobilizing of Polydopamine-Assisted ε-Polylysine and Gum Arabic on Titanium: Tailoring of Antibacterial and Oste-ogenic Properties. Materials Science and Engineering: C, 110, Article ID: 110690. https://doi.org/10.1016/j.msec.2020.110690 |
[33] | Gao, C., Cheng, H., Xu, N., et al. (2019) Poly(dopamine) and Ag Nanoparticle-Loaded TiO2 Nanotubes With Optimized Antibacterial and Ros-Scavenging Bioactivities. Nanomedicine, 14, 803-818.
https://doi.org/10.2217/nnm-2018-0131 |
[34] | Yuan, Z., Liu, P., Hao, Y., Ding, Y. and Cai, K. (2018) Construction of Ag-Incorporated Coating on Ti Substrates for Inhibited Bacterial Growth and Enhanced Osteoblast Response. Colloids and Surfaces B: Biointerfaces, 171, 597-605.
https://doi.org/10.1016/j.colsurfb.2018.07.064 |
[35] | Zhong, X., Song, Y., Yang, P., et al. (2016) Titanium Surface Priming with Phase-Transited Lysozyme to Establish a Silver Nanoparticle-Loaded Chitosan/Hyaluronic Acid Antibacte-rial Multilayer via Layer-by-Layer Self-Assembly. PLOS ONE, 11, e0146957. https://doi.org/10.1371/journal.pone.0146957 |
[36] | Croes, M., Bakhshandeh, S., van Hengel, I.A.J., et al. (2018) Antibacterial and Immunogenic Behavior of Silver Coatings on Additively Manufactured Porous Titanium. Acta Bio-materialia, 81, 315-327.
https://doi.org/10.1016/j.actbio.2018.09.051 |
[37] | Furko, M., Jiang, Y., Wilkins, T.A. and Balázsi, C. (2016) Elec-trochemical and Morphological Investigation of Silver and Zinc Modified Calcium Phosphate Bioceramic Coatings on Metallic Implant Materials. Materials Science and Engineering: C, 62, 249-259. https://doi.org/10.1016/j.msec.2016.01.060 |
[38] | Pruchova, E., Kosova, M., Fojt, J., et al. (2019) A Two-Phase Gradual Silver Release Mechanism from a Nanostructured TiAlV Surface as a Possible Antibacterial Modification in Im-plants. Bioelectrochemistry, 127, 26-34.
https://doi.org/10.1016/j.bioelechem.2019.01.003 |
[39] | Radtke, A., Grodzicka, M., Ehlert, M., et al. (2019) “To Be Microbiocidal and Not to Be Cytotoxic at the Same Time…”—Silver Nanoparticles and Their Main Role on the Surface of Titanium Alloy Implants. Journal of Clinical Medicine, 8, Article No. 334. https://doi.org/10.3390/jcm8030334 |
[40] | Radtke, A., Grodzicka, M., Ehlert, M., et al. (2018) Studies on Silver Ions Releasing Processes and Mechanical Properties of Surface-Modified Titanium Alloy Implants. International Journal of Molecular Sciences, 19, Article No. 3962.
https://doi.org/10.3390/ijms19123962 |
[41] | Cabal, B., Cafini, F., Esteban-Tejeda, L., et al. (2012) Inhibitory Effect on in Vitro Streptococcus oralis Biofilm of a Soda-Lime Glass Containing Silver Nanoparticles Coating on Titanium Al-loy. PLOS ONE, 7, e42393.
https://doi.org/10.1371/journal.pone.0042393 |