|
Applied Physics 2023
超导转变边沿单光子探测器研究进展
|
Abstract:
单光子探测技术作为推动前沿科技发展的重要支撑技术之一,在核物理学中微子观测、绿色荧光蛋白检测、用于生物成像的超高分辨率显微镜以及量子信息通信等领域中均发挥着重要作用。因此,更高性能单光子探测器的研制一直受到极大关注。与传统单光子探测器相比,超导转变边沿单光子探测器在量子效率、暗计数、能量分辨和光子数分辨等方面提供了更加卓越的性能。本文从超导转变边沿单光子探测器的工作原理、性能测试系统、主要性能及研究进展等方面进行了简要综述,对该探测器未来的研究具有重要的参考意义。
As one of the important supporting technologies to promote the development of cutting-edge science and technology, single-photon measurement plays an important role in observing neutrinos in nuclear physics, detecting photons from green fluorescent protein, super-resolution microscopes for bioimaging, and quantum information communication. Therefore, the development of higher-performance single-photon detectors has been receiving great attention. Compared with traditional single-photon detectors, superconducting transition-edge based single-photon detectors provide superior performance in terms of quantum efficiency, dark count rate, energy resolution, and photon number resolving capability. In this paper we review the operating principle, measurement system, main performance and research progress of super-conducting transition-edge based single-photon detectors, which has important reference significance for the future research.
[1] | Cohen-Tannoudji, C., Dupont-Roc, J. and Grynberg, G. (1997) Photons and Atoms-Introduction to Quantum Elec-trodynamics. Wiley-VCH, Hoboken, 486. https://doi.org/10.1002/9783527618422 |
[2] | Loudon, R. (1974) The Quantum Theory of Light. American Journal of Physics, 42, 1041.
https://doi.org/10.1063/1.3128806 |
[3] | Miller, M.M. and Mishkin, E.A. (1966) Characteristic States of the Electromagnetic Radiation Field. Physical Review, 152, 1110. https://doi.org/10.1103/PhysRev.152.1110 |
[4] | Ter Haar, D. (2016) The Old Quantum Theory. Elsevier, Amsterdam. |
[5] | Arons, A.B. and Peppard, M.B. (1965) Einstein’s Proposal of the Photon Concept—A Translation of the Annalen der Physik Paper of 1905. American Journal of Physics, 33, 367-374. https://doi.org/10.1119/1.1971542 |
[6] | Compton, A.H. (1923) A Quantum Theory of the Scattering of X-Rays by Light Elements. Physical Review, 21, 483.
https://doi.org/10.1103/PhysRev.21.483 |
[7] | Lewis, G.N. (1926) The Conservation of Photons. Nature, 118, 874-875. https://doi.org/10.1038/118874a0 |
[8] | Dirac, P.A.M. (1927) The Quantum Theory of the Emission and Absorption of Radiation. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 114, 243-265.
https://doi.org/10.1098/rspa.1927.0039 |
[9] | Fermi, E. (1932) Quantum Theory of Radiation. Reviews of Modern Physics, 4, 87.
https://doi.org/10.1103/RevModPhys.4.87 |
[10] | 程碑彤, 代千, 谢修敏, 等. 单光子探测器的研究进展[J]. 激光技术, 2022, 46(5): 601-609. |
[11] | 梁创, 廖静, 梁冰, 等. 硅雪崩光电二极管单光子探测器[J]. 光子学报, 2000, 29(12): 1142-1147. |
[12] | 尤立星. 光量子信息利器——超导纳米线单光子探测器[J]. 物理, 2021, 50(10): 678-683. |
[13] | Miller, A.J., Lita, A.E., Calkins, B., et al. (2011) Compact Cryogenic Self-Aligning Fiber-to-Detector Coupling with Losses below One Percent. Optics Express, 19, 9102-9110. https://doi.org/10.1364/OE.19.009102 |
[14] | Fukuda, D., Fujii, G., Numata, T., et al. (2011) Titanium-Based Transition-Edge Photon Number Resolving Detector with 98% Detection Efficiency with Index-Matched Small-Gap Fiber Coupling. Optics Express, 19, 870-875.
https://doi.org/10.1364/OE.19.009102 |
[15] | Fukuda, D., Fujii, G., Numata, T., et al. (2010) Titanium Super-conducting Photon-Number-Resolving Detector. IEEE Transactions on Applied Superconductivity, 21, 241-245. https://doi.org/10.1109/TASC.2010.2089953 |
[16] | Miller, A.J., Nam, S.W., Martinis, J.M., et al. (2003) Demonstration of a Low-Noise Near-Infrared Photon Counter with Multiphoton Discrimination. Applied Physics Letters, 83, 791-793. https://doi.org/10.1063/1.1596723 |
[17] | Lolli, L., Taralli, E., Portesi, C., et al. (2013) High Intrinsic Energy Resolution Photon Number Resolving Detectors. Applied Physics Letters, 103, Article ID: 041107. https://doi.org/10.1063/1.4815922 |
[18] | Paolucci, F., Buccheri, V., Germanese, G., et al. (2020) Development of Highly Sensitive Nanoscale Transition Edge Sensors for Gigahertz Astronomy and Dark Matter Search. Journal of Applied Physics, 128, Article ID: 194502.
https://doi.org/10.1063/5.0021996 |
[19] | Hummatov, R., Adams, J.S., Bandler, S.R., et al. (2020) Quantum Efficiency Study and Reflectivity Enhancement of Au/Bi Absorbers. Journal of Low Temperature Physics, 199, 393-400. https://doi.org/10.1007/s10909-020-02424-3 |
[20] | Fukuda, D. (2019) Single-Photon Measurement Techniques with a Superconducting Transition Edge Sensor. IEICE Transactions on Electronics, 102, 230-234. https://doi.org/10.1587/transele.2018SDI0001 |
[21] | Harder, G., Bartley, T.J., Lita, A.E., et al. (2016) Sin-gle-Mode Parametric-Down-Conversion States with 50 Photons as a Source for Mesoscopic Quantum Optics. Physical Review Letters, 116, Article ID: 143601.
https://doi.org/10.1103/PhysRevLett.116.143601 |
[22] | Lita, A.E., Reddy, D.V., Verma, V.B., et al. (2022) Development of Superconducting Single-Photon and Photon-Number Resolving Detectors for Quantum Applica-tions. Journal of Lightwave Technology, 40, 7578-7597.
https://doi.org/10.1109/JLT.2022.3195000 |
[23] | Hirayama, F., Kohjiro, S., Fukuda, D., et al. (2013) Micro-wave SQUID Multiplexer for TES Readout. IEEE Transactions on Applied Superconductivity, 23, Article ID: 2500405. https://doi.org/10.1109/TASC.2012.2237474 |
[24] | Mitsuda, K., Fujimoto, R., Miyazaki, T., et al. (1999) Multi-Pixel Readout of Transition-Edge Sensors Using a Multi-Input SQUID. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 436, 252-255. https://doi.org/10.1016/S0168-9002(99)00630-0 |
[25] | Yamasaki, N.Y., Masui, K., Mitsuda, K., et al. (2006) Design of Frequency Domain Multiplexing of TES Signals by Multi-Input SQUIDs. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 559, 790-792. https://doi.org/10.1016/j.nima.2005.12.141 |
[26] | Levi, M., Hoppensteadt, F.C. and Miranker, W.L. (1978) Dynamics of the Josephson Junction. Quarterly of Applied Mathematics, 36, 167-198. https://doi.org/10.1090/qam/484023 |
[27] | Irwin, K.D. and Hilton, G.C. (2005) Transition-Edge Sensors. In: Enss, C., Ed., Cryogenic Particle Detection, Springer, Berlin, 63-150. https://doi.org/10.1007/10933596_3 |
[28] | 姜稣仆. 面向超导转变边缘探测器高精度可控电流源的研究[D]: [硕士学位论文]. 北京: 中国科学院大学(中国科学院上海应用物理研究所), 2021. https://doi.org/10.27585/d.cnki.gkshs.2021.000071 |
[29] | Fominov, Y.V. and Mikhailov, D.S. (2022) Asymmetric Higher-Harmonic SQUID as a Josephson Diode. Physical Review B, 106, Article ID: 134514. https://doi.org/10.1103/PhysRevB.106.134514 |
[30] | Schuster, C., Wegner, M., Enss, C., et al. (2022) Flux Ramp Modulation Based Hybrid Microwave SQUID Multiplexer. Applied Physics Letters, 120, Ar-ticle ID: 162601. https://doi.org/10.1063/5.0087994 |
[31] | Geng, Y., Zhang, W., Li, P.Z., et al. (2020) Improving Energy Detection Efficiency of Ti-Based Superconducting Transition-Edge Sensors with Optical Cavity. Journal of Low Temperature Physics, 199, 556-562.
https://doi.org/10.1007/s10909-020-02383-9 |
[32] | Cabrera, B., Clarke, R.M., Colling, P., et al. (1998) Detec-tion of Single Infrared, Optical, and Ultraviolet Photons Using Superconducting Transition Edge Sensors. Applied Physics Letters, 73, 735-737. https://doi.org/10.1063/1.121984 |
[33] | Miller, A.J., Cabrera, B., Clarke, R.M., et al. (1999) Transition Edge Sensors as Single Photon Detectors. IEEE Transactions on Applied Superconductivity, 9, 4205-4208. https://doi.org/10.1109/77.783952 |
[34] | Rajteri, M., Rastello, M.L. and Monticone, E. (2000) An-tireflection Coatings for Superconducting Photodetectors. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 444, 461-464. https://doi.org/10.1016/S0168-9002(99)01423-0 |
[35] | Rosenberg, D., Nam, S.W., Miller, A.J., et al. (2004) Near-Unity Absorption of Near-Infrared Light in Tungsten Films. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 520, 537-540. https://doi.org/10.1016/j.nima.2003.11.308 |
[36] | Rosenberg, D., Lita, A.E., Miller, A.J., et al. (2005) Perfor-mance of Photon-Number Resolving Transition-Edge Sensors with Integrated 1550 nm Resonant Cavities. IEEE Transactions on Applied Superconductivity, 15, 575-578.
https://doi.org/10.1109/TASC.2005.849925 |
[37] | Damayanthi, R.M.T., Fukuda, D., Takahashi, H., et al. (2008) Design of an Optical Absorption Cavity for Titanium Transition Edge Sensors. Journal of Low Temperature Physics, 151, 46-50. https://doi.org/10.1007/s10909-007-9707-0 |
[38] | Fukuda, D., Fujii, G., Numata, T., et al. (2009) Photon Number Resolving Detection with High Speed and High Quantum Efficiency. Metrologia, 46, S288. https://doi.org/10.1088/0026-1394/46/4/S29 |
[39] | Zhang, W., Geng, Y., Wang, Z., et al. (2019) Development of Titanium-Based Transition-Edge Single-Photon Detector. IEEE Transactions on Applied Superconductivity, 29, 1-5. https://doi.org/10.1109/TASC.2019.2948993 |
[40] | 张青雅, 董文慧, 何根芳, 等. 超导转变边沿单光子探测器原理与研究进展[J]. 物理学报, 2014(20): 14. |
[41] | Fukuda, D., Damayanthi, R.M.T., Yoshizawa, A., et al. (2007) Titanium Based Transition Edge Microcalorimeters for Optical Photon Measurements. IEEE Transactions on Applied Superconductivity, 17, 259-262.
https://doi.org/10.1109/TASC.2007.897393 |
[42] | Lita, A.E., Calkins, B., Pellochoud, L.A., et al. (2009) High-Efficiency Photon-Number-Resolving Detectors Based on Hafnium Transition-Edge Sensors. AIP Conference Proceedings, 1185, 351-354. https://doi.org/10.1063/1.3292350 |
[43] | Portesi, C., Taralli, E., Lolli, L., et al. (2014) Fabrication and Characterization of Fast TESs with Small Area for Single Photon Counting. IEEE Transac-tions on Applied Superconductivity, 25, 1-4.
https://doi.org/10.1109/TASC.2014.2367455 |
[44] | Xu, X., Rajteri, M., Li, J., et al. (2022) Investigation of Ti/Au Transition-Edge Sensors for Single-Photon Detection. Journal of Low Temperature Physics, 209, 372-378. https://doi.org/10.1007/s10909-022-02818-5 |
[45] | Lolli, L., Taralli, E. and Rajteri, M. (2012) Ti/Au TES to Discriminate Single Photons. Journal of Low Temperature Physics, 167, 803-808. https://doi.org/10.1007/s10909-012-0473-2 |
[46] | Lolli, L., Taralli, E., Rajteri, M., et al. (2013) Characterization of Optical Fast Transition-Edge Sensors with Optimized Fiber Coupling. IEEE Transactions on Applied Supercon-ductivity, 23, Article ID: 2100904.
https://doi.org/10.1109/TASC.2013.2238981 |
[47] | Avella, A., Brida, G., Degiovanni, I.P., et al. (2011) Self Consistent, Absolute Calibration Technique for Photon Number Resolving Detectors. Optics Express, 19, 23249-23257. https://doi.org/10.1364/OE.19.023249 |
[48] | Hattori, K., Konno, T., Miura, Y., et al. (2022) An Optical Transition-Edge Sensor with High Energy Resolution. Superconductor Science and Technology, 35, Article ID: 095002. https://doi.org/10.1088/1361-6668/ac7e7b |
[49] | Morais, L.A., Weinhold, T., de Almeida, M.P., et al. (2020) Precisely Determining Photon-Number in Real-Time. |
[50] | Eaton, M., Hossameldin, A., Birrittella, R.J., et al. (2022) Resolving 100 Photons and Quantum Generation of Unbiased Random Numbers. Nature Photonics, 17, 106-111. https://doi.org/10.1038/s41566-022-01105-9 |