全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于ARIMA的多元线性回归模型的全球气候变暖分析
Global Warming Analysis Based on ARIMA Multiple Linear Regression Model

DOI: 10.12677/MOS.2023.122118, PP. 1257-1271

Keywords: 全球变暖,机器学习方法,ARIMA,多元线性回归模型;Global Warming, Machine Learning Methods, ARIMA, Multiple Linear Regression Model

Full-Text   Cite this paper   Add to My Lib

Abstract:

全球气候变暖已成为国际社会广泛关注的问题,本文利用ARIMA和多元线性回归模型来分析全球的温度变化和影响气温的因素。首先我们对1992年到2022年全球平均气温的12个月份数据,使用SPSS软件进行可视化与预处理,对异常值的波动进行总结并建立数学模型。然后我们开发一种机器学习方法对火山爆发、森林火灾、新冠肺炎和太阳活动异常四种自然灾害的影响进行分析,给出了长期线性趋势,得出自然灾害对气候变暖的影响。接着对于影响全球气温变化的原因,我们从降水量、海洋表面温度、全球平均温度、二氧化碳浓度、地球吸放热等因素进行考虑,利用逐步回归法通过SPSS进行相关性检验求解多元线性微分方程,得出地球放热对温度影响最大。最后我们对模型进行了优化和推广,将ARIMA模型与多元线性回归预测模型进行结合,利用极寒天气情况对模型进行推广,检验模型的灵敏度,最终的拟合效果较好,应用场景较广。
Global warming has become a concern of the international community. In this paper, ARIMA and multiple linear regression models are used to analyze the global temperature change and the fac-tors that affect the temperature. Firstly, the 12-month data of global mean temperature from 1992 to 2022 were visualized and preprocessed by SPSS software, and the fluctuations of outliers were summarized and mathematical models were established. Then, we developed a machine learning method to analyze the impact of four natural disasters, volcanic eruption, forest fire, COVID-19 and abnormal solar activity, and gave a long-term linear trend to get the impact of natural disasters on climate warming. Then, for the reasons affecting the change of global temperature, we considered precipitation, ocean surface temperature, global average temperature, carbon dioxide concentra-tion, earth heat absorption and release and other factors. We used the step regression method to solve the multivariate linear differential equation by SPSS correlation test, and concluded that the earth heat release had the greatest influence on temperature. Finally, we optimized and extended the model, combined the ARIMA model with the multiple linear regression prediction model, pro-moted the model with the extreme cold weather, and tested the sensitivity of the model. The final fitting effect was good and the application scenarios were wide.

References

[1]  刘政阳, 李挺宇. 中国地表气温上升趋势明显[J]. 生态经济, 2019, 35(6): 9-12.
[2]  陈振坤, 贾积身, 原晨冉, 徐瑞. 多元非线性回归模型在气候变暖方面的应用——以加拿大地区为例[J]. 河南科技学院学报(自然科学版), 2020, 48(3): 60-67.
[3]  张宸豪, 冯曦, 冯卫兵, 刘涛, 丁坤. 基于大数据分析下的气候模型[J]. 海洋科学, 2020, 44(10): 1-11.
[4]  National Oceanographic and Atmospheric Administration. NOAA Research News & Features (2022) Carbon Di-oxide Now Mare than 50% Higher than Pre-Industrial Levels.
https://www.noaa.gov/news-release/carbon-dioxide-now-more-than-50-higher-thanpre-industrial-levelsMalik
[5]  Forster, P.M., Forster, H.I., Evans, M.J., et al. (2020) Publisher Correction Current and Future Global Climate Impacts Resulting from COVID-19. Nature Climate Change, 10, 971.
https://doi.org/10.1038/s41558-020-0904-z
[6]  Fang, J.Q. (2020) Study on 11-Year Solar Activity Signal Characteristics in Northern Hemisphere Winter Climate under Global Warming. East China Normal University, Shanghai.
[7]  Dogar, M.M., Hermanson, L., Scaife, A.A., Visioni, D., Zhao, M., Hoteit, I., Graf, H.-F., Dogar, M.A., Almazroui, M. and Fujiwara, M. (2022) A Review of El Ni?o Southern Oscillation Linkage to Strong Volcanic Eruptions and Post- Volcanic Winter Warming. Earth Systems and Environment, 7, 15-42.
https://doi.org/10.1007/s41748-022-00331-z
[8]  彭瑞林, 张玉瑞, 郭瑞伟. 基于多元回归的全球气候变化模式分析[J]. 齐鲁工业大学学报, 2020, 34(4): 61-68.
[9]  Peng, R.L., Zhang, Y.R. and Guo, R.W. (2020) Model Analysis of Global Climate Change Based on Multiple Regression. Journal of Qilu University of Technology, 34, 61-68.
[10]  王玉华. 基于ARIMA模型和LSTM神经网络的全球气温预测分析[J]. 科技创新, 2021(35): 166-170.
[11]  2020年全球温度记录. 基于8000多个气象站40年来记录的原始数据、记录高温和记录低温的可视化[EB/OL].
https://berkeleyearth.org/data, 2022-11-26.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133