|
基于实物实验的地震下扶梯桁架后屈曲仿真分析
|
Abstract:
为了评估自动扶梯桁架的安全性,对地震状况下建筑物层间变形所导致扶梯桁架压缩的力学特性进行了实验研究和仿真分析。首先,基于自动扶梯抗震标准的要求,进行了实物实验,获得扶梯桁架压缩变形形态和桁架支撑角钢水平支反力随压缩量大小的变化曲线。然后,通过采用多线性材料模拟扶梯桁架型材的塑性段应力–应变特性,并在分析中考虑焊缝和结构的桁架几何尺寸误差的影响,建立扶梯桁架精细化有限元模型,进行非线性后屈曲分析。结果表明,扶梯桁架仿真与实验的压缩变形方向和位置一致,桁架支撑角钢水平支反力随压缩量大小曲线趋势相同,其中压缩过程中的桁架支撑角钢最大水平和压缩后桁架的回弹量误差均小于5%,验证了所建立的精细化有限元分析模型的有效性,为自动扶梯的抗震分析提供参考。
In order to evaluate the safety of escalator truss, the mechanical properties of escalator truss com-pression caused by inter-story deformation of buildings in earthquake were studied experimentally and simulated. Firstly, based on the requirements of the escalator seismic standard, a physical ex-periment was carried out to obtain the compression deformation shape of the escalator truss and the change curve of the horizontal support reaction force of the truss support angle steel with the compression amount. Then, by using multi-linear materials to simulate the stress-strain character-istics of the plastic section of the escalator truss profile, and considering the influence of the weld and the geometric size error of the structure in the analysis, a refined finite element model of the escalator truss is established for nonlinear post-buckling analysis. The results show that the com-pression deformation direction and position of the escalator truss simulation are consistent with those of the experiment, and the horizontal support reaction force of the truss support angle steel with the compression process in simulation has the same trend with this of the experiment. The er-ror of simulation and experimental data of maximum horizontal reaction force of the truss support angle steel and the rebound amount of the compressed truss in the compression process are less than 5%, which verifies the effectiveness of the established refined finite element analysis model and provides a reference for the seismic analysis of the escalator.
[1] | 杨天玲, 朱道林, 张海波, 黄金永. 基于ANSYS的自动扶梯桁架结构分析及实验研究[J]. 机电工程, 2021, 38(12): 1641-1646. |
[2] | 徐伟通. 自动扶梯关键部件力学特性研究[D]: [硕士学位论文]. 南京: 南京理工大学, 2019.
https://doi.org/10.27241/d.cnki.gnjgu.2019.000791 |
[3] | 高原, 曹国华, 秦健聪. 船用自动扶梯桁架的有限元分析及其应用[J]. 机械强度, 2017, 39(3): 738-742.
https://doi.org/10.16579/j.issn.1001.9669.2017.03.042 |
[4] | 周游, 陆毅臻. 基于ANSYS的自动扶梯型材偏差对桁架挠度的影响[J]. 特种设备安全技术, 2021(2): 39-40. |
[5] | 方晓旻, 朱昌明. 自动扶梯金属结构轻量化方法研究[J]. 机械强度, 2008(3): 433-436.
https://doi.org/10.16579/j.issn.1001.9669.2008.03.030 |
[6] | 陈杨. 基于ANSYS的扶梯桁架结构自动建模与分析系统开发[D]: [硕士学位论文]. 南京: 南京航空航天大学, 2016. |
[7] | Jiang, J., Wang, S.J., Zhao, L.D., Wu, H.P. and Kong, L.X. (2020) Research on Parametric Finite Element Analysis Method of Escalator Truss. Journal of Physics: Conference Series, 1549, Article ID: 032122. |
[8] | Yin, X.W., Qian, W.X. and Pham, H. (2018) Parametric Simulation Analysis and Reliability of Escalator Truss. Open Physics, 16, 938-942. https://doi.org/10.1515/phys-2018-0115 |
[9] | 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/Z 28597-2012. 地震情况下的电梯和自动扶梯要求 汇编报告[S]. 北京: 中国标准出版社, 2012. |
[10] | 日本电梯协会事务局, 黄建华. 日本升降机抗震设计?施工指南的修订[J]. 中国电梯, 2010, 21(19): 23-27. |
[11] | 王宇, 王树, 朱波. 利用ANSYS Shell181单元分析钢结构问题[J]. 山西建筑, 2006(12): 32-34. |