全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

m6A与LncRNA之间在胰腺癌中的应用及展望
Application and Prospect between m6A and LncRNA in Pancreatic Cancer

DOI: 10.12677/ACM.2023.133556, PP. 3883-3888

Keywords: n6-甲基腺苷(m6A),长链非编码RNA,胰腺癌
n6-Methyladenosine (m6A)
, Long-Stranded Non-Coding RNA, Pancreatic Cancer

Full-Text   Cite this paper   Add to My Lib

Abstract:

胰腺癌是消化道肿瘤中具有侵袭性和致命性的恶性肿瘤,预后差。m6A是最常见转录后修饰,在RNA的输出、翻译、稳定、成熟和衰变起着至关重要的作用。LncRNA是一类转录长度超过200nt的分子,通常情况下不直接参与蛋白质编码过程,而是以RNA的形式参与蛋白质编码基因的调控。对于m6A修饰与lncRNA之间的相关研究也正在进行中。本文围绕m6A与lncRNA在PAAD中的最新研究及进展作一综述。
Pancreatic cancer is an aggressive and lethal malignancy among GI tract tumors with poor prog-nosis. m6A is the most common post-transcriptional modification and plays a crucial role in RNA output, translation, stabilization, maturation and decay. lncRNA is a class of molecules with tran-scriptional length over 200 nt, which normally do not participate in protein coding process directly, but in the form of RNA in protein coding gene regulation. Studies on the correlation between m6A modifications and lncRNAs are also underway. This paper presents a review of the latest research progress between m6A and lncRNA in PAAD, aiming to discuss the latest research and progress between m6A and LncRNA in pancreatic cancer.

References

[1]  Ferlay, J., Soerjomataram, I., Dikshit, R., et al. (2015) Cancer Incidence and Mortality Worldwide: Sources, Methods and Major Patterns in GLOBOCAN 2012. International Journal of Cancer, 136, E359-E386.
https://doi.org/10.1002/ijc.29210
[2]  Zhao, Z. and Liu, W. (2020) Pancreatic Cancer: A Review of Risk Factors, Diagnosis, and Treatment. Technology in Cancer Research & Treatment, 19.
https://doi.org/10.1177/1533033820962117
[3]  Mizrahi, J.D., Surana, R., Valle, J.W. and Shroff, R.T. (2020) Pancreatic Cancer. The Lancet, 395, 2008-2020.
https://doi.org/10.1016/S0140-6736(20)30974-0
[4]  Barbieri, I. and Kouzarides, T. (2020) Role of RNA Modi-fications in Cancer. Nature Reviews Cancer, 20, 303-322.
https://doi.org/10.1038/s41568-020-0253-2
[5]  Zhao, B.S., Roundtree, I.A. and He, C. (2017) Post-Transcriptional Gene Regulation by mRNA Modifications. Nature Reviews Molecular Cell Biology, 18, 31-42.
https://doi.org/10.1038/nrm.2016.132
[6]  Yi, Y.C., Chen, X.Y., Zhang, J. and Zhu, J.S. (2020) Novel Insights into the Interplay between m6A Modification and Noncoding RNAs in Cancer. Molecular Cancer, 19, Article No. 121.
https://doi.org/10.1186/s12943-020-01233-2
[7]  Wang, S., Sun, C., Li, J., et al. (2017) Roles of RNA Meth-ylation by Means of N6-Methyladenosine (m6A) in Human Cancers. Cancer Letters, 408, 112-120.
https://doi.org/10.1016/j.canlet.2017.08.030
[8]  Du, K., Zhang, L., Lee, T. and Sun, T. (2019) m6A RNA Methylation Controls Neural Development and Is Involved in Human Diseases. Molecular Neurobiology, 56, 1596-1606.
https://doi.org/10.1007/s12035-018-1138-1
[9]  He, L., Li, H., Wu, A., Peng, Y., Shu, G. and Yin, G. (2019) Functions of N6-Methyladenosine and Its Role in Cancer. Molecular Cancer, 18, Article No. 176.
https://doi.org/10.1186/s12943-019-1109-9
[10]  Han, J., Wang, J.Z., Yang, X., et al. (2019) METTL3 Promote Tumor Proliferation of Bladder Cancer by Accelerating pri-miR221/222 Maturation in m6A-Dependent Manner. Mo-lecular Cancer, 18, Article No. 110.
https://doi.org/10.1186/s12943-019-1036-9
[11]  Wang, Q., Chen, C., Ding, Q., et al. (2020) METTL3-Mediated m6A Modification of HDGF mRNA Promotes Gastric Cancer Progression and Has Prognostic Significance. Gut, 69, 1193-1205.
https://doi.org/10.1136/gutjnl-2019-319639
[12]  He, Y., Hu, H., Wang, Y., et al. (2018) ALKBH5 Inhibits Pan-creatic Cancer Motility by Decreasing Long Non-Coding RNA KCNK15-AS1 Methylation. Cellular Physiology and Biochemistry, 48, 838-846.
https://doi.org/10.1159/000491915
[13]  Yang, X., Yang, Y., Sun, B.F., et al. (2017) 5-Methylcytosine Promotes mRNA Export—NSUN2 as the methyltransferase and ALYREF as an m5C Reader. Cell Research, 27, 606-625.
https://doi.org/10.1038/cr.2017.55
[14]  Cabrita, R., Lauss, M., Sanna, A., et al. (2020) Tertiary lymphoid Struc-tures Improve Immunotherapy and Survival in Melanoma. Nature, 577, 561-565.
https://doi.org/10.1038/s41586-019-1914-8
[15]  Havel, J.J., Chowell, D. and Chan, T.A. (2019) The Evolving Landscape of Biomarkers for Checkpoint Inhibitor Immunotherapy. Nature Reviews Cancer, 19, 133-150.
https://doi.org/10.1038/s41568-019-0116-x
[16]  Petitprez, F., de Reyniès, A., Keung, E.Z., et al. (2020) B Cells Are Associated with Survival and Immunotherapy Response in Sarcoma. Nature, 577, 556-560.
https://doi.org/10.1038/s41586-019-1906-8
[17]  Darvin, P., Toor, S.M., Nair, S.V. and Elkord, E. (2018) Immune Checkpoint Inhibitors: Recent Progress and Potential Biomarkers. Experimental & Molecular Medicine, 50, 1-11.
https://doi.org/10.1038/s12276-018-0191-1
[18]  Kopp, F. and Mendell, J.T. (2018) Functional Classification and Experimental Dissection of Long Noncoding RNAs. Cell, 172, 393-407.
https://doi.org/10.1016/j.cell.2018.01.011
[19]  Wei, J.W., Huang, K., Yang, C. and Kang, C.S. (2017) Non-Coding RNAs as Regulators in Epigenetics (Review) Oncology Reports, 37, 3-9.
https://doi.org/10.3892/or.2016.5236
[20]  Dykes, I.M. and Emanueli, C. (2017) Transcriptional and Post-Transcriptional Gene Regulation by Long Non-Coding RNA. Genomics, Proteomics & Bioinformatics, 15, 177-186.
https://doi.org/10.1016/j.gpb.2016.12.005
[21]  Tsai, M.C., Manor, O., Wan, Y., Mosammaparast, N., Wang, J.K., Lan, F., Shi, Y., Segal, E. and Chang, H.Y. (2010) Long Noncoding RNA as Modular Scaffold of Histone Modification Complexes. Science, 329, 689-693.
https://doi.org/10.1126/science.1192002
[22]  Dai, F., Wu, Y., Lu, Y., et al. (2020) Crosstalk between RNA m6A Modification and Non-Coding RNA Contributes to Cancer Growth and Progression. Molecular Therapy Nucleic Acids, 22, 62-71.
https://doi.org/10.1016/j.omtn.2020.08.004
[23]  Ping, X.L., Sun, B.F., Wang, L., et al. (2014) Mammalian WTAP Is a Regulatory Subunit of the RNA N6-Methyladenosine Methyltransferase. Cell Research, 24, 177-189.
https://doi.org/10.1038/cr.2014.3
[24]  Sorci, M., Ianniello, Z., Cruciani, S., et al. (2018) METTL3 Regulates WTAP Protein Homeostasis. Cell Death & Disease, 9, Article No. 796.
https://doi.org/10.1038/s41419-018-0843-z
[25]  Zheng, G., Dahl, J.A., Niu, Y., et al. (2013) ALKBH5 Is a Mammalian RNA Demethylase that Impacts RNA Metabolism and Mouse Fertility. Mol Cell, 49, 18-29.
https://doi.org/10.1016/j.molcel.2012.10.015
[26]  Jia, G., Fu, Y., Zhao, X., et al. (2011) N6-Methyladenosine in Nuclear RNA Is a Major Substrate of the Obesity-Associated FTO. Nature Chemical Biology, 7, 885-887.
https://doi.org/10.1038/nchembio.687
[27]  Meyer, K.D. and Jaffrey, S.R. (2017) Rethinking m6A Readers, Writers, and Erasers. Annual Review of Cell and Developmental Biology, 33, 319-342.
https://doi.org/10.1146/annurev-cellbio-100616-060758
[28]  Chen, S., Ren, H., Zhang, X., et al. (2022) Research Advances of N6-Methyladenosine in Diagnosis and Therapy of Pancreatic Cancer. Journal of Clinical Laboratory Analysis, 36, e24611.
https://doi.org/10.1002/jcla.24611
[29]  Xia, T., Wu, X., Cao, M., Zhang, P., Shi, G., Zhang, J., et al. (2019) The RNA m6A Methyltransferase METTL3 Promotes Pancreatic Cancer Cell Proliferation and Invasion. Pathology-Research and Practice, 215, Article ID: 152666.
https://doi.org/10.1016/j.prp.2019.152666
[30]  Taketo, K., Konno, M., Asai, A., Koseki, J., Toratani, M., Satoh, T., et al. (2018) The Epitranscriptome m6A Writer METTL3 Promotes Chemo- and Radioresistance in Pancreatic Cancer Cells. International Journal of Oncology, 52, 621-9.
https://doi.org/10.3892/ijo.2017.4219
[31]  Ying, P., Li, Y., Yang, N., Wang, X., Wang, H., He, H., et al. (2021) Identification of Genetic Variants in m6A Modification Genes Associated with Pancreatic Cancer Risk in the Chinese Population. Archives of Toxicology, 95, 1117-1128.
https://doi.org/10.1007/s00204-021-02978-5
[32]  Guo, X., Li, K., Jiang, W., Hu, Y., Xiao, W., Huang, Y., et al. (2020) RNA Demethylase ALKBH5 Prevents Pancreatic Cancer Progression by Posttranscriptional Activation of PER1 in an m6A-YTHDF2-Dependent Manner. Molecular Cancer, 19, Article No. 91.
https://doi.org/10.1186/s12943-020-01158-w
[33]  Tang, B., Yang, Y., Kang, M., Wang, Y.S., Wang, Y., Bi, Y., et al. (2020) m6A Demethylase ALKBH5 Inhibits Pancreatic Cancer Tumorigenesis by Decreasing WIF-1 RNA Methylation and Mediating Wnt Signaling. Molecular Cancer, 19, Article No. 3.
https://doi.org/10.1186/s12943-019-1128-6
[34]  Bhan, A., Soleimani, M. and Mandal, S.S. (2017) Long Noncoding Rna and Cancer: A New Paradigm. Cancer Research, 77, 3965-3981.
https://doi.org/10.1158/0008-5472.CAN-16-2634
[35]  Chu, C., Zhang, Q.C., da Rocha, S.T., Flynn, R.A., Bharadwaj, M., Calabrese, J.M., et al. (2015) Systematic Discovery of Xist RNA Binding Proteins. Cell, 161, 404-416.
https://doi.org/10.1016/j.cell.2015.03.025
[36]  Monfort, A., Minin, D.G., Postlmayr, A., Freimann, R., Arieti, F., Thore, S., et al. (2015) Identification of Spen as a Crucial Factor for Xist Function through Forward Genetic Screening in Haploid Embryonic Stem Cells. Cell Reports, 12, 554-561.
https://doi.org/10.1016/j.celrep.2015.06.067
[37]  Patil, D.P., Chen, C.-K., Pickering, B.F., Chow, A., Jackson, C., Guttman, M., et al. (2016) m6A RNA Methylation Promotes XIST-Mediated Transcriptional Repression. Nature, 537, 369-373.
https://doi.org/10.1038/nature19342
[38]  Nesterova, T.B., Wei, G., Coker, H., Pintacuda, G., Bowness, J.S., Zhang, T., et al. (2019) Systematic Allelic Analysis Defines the Interplay of Key Pathways in X Chromosome In-activation. Nature Communications, 10, Article No. 3129.
https://doi.org/10.1038/s41467-019-11171-3
[39]  Liu, J., Zhang, X., Chen, K., Cheng, Y., Liu, S., Xia, M., et al. (2019) CCR7 Chemokine Receptor-Inducible lnc-Dpf3 Restrains Dendritic Cell Migration by Inhibiting HIF-1α-Mediated Glycolysis. Immunity, 50, 600-615. e15.
https://doi.org/10.1016/j.immuni.2019.01.021
[40]  Liu, H., Xu, Y., Yao, B., Sui, T., Lai, L. and Li, Z. (2020) A Novel N6-Methyladenosine (m6A)-Dependent Fate Decision for the lncRNA THOR. Cell Death & Disease, 11, Article No. 613.
https://doi.org/10.1038/s41419-020-02833-y
[41]  Fatica, A. and Bozzoni, I. (2014) Long Non-Coding RNAs: New Players in Cell Differentiation and Development. Nature Reviews Genetics, 15, 7-21.
https://doi.org/10.1038/nrg3606
[42]  Cao, P.W., Liu, L., Li, Z.H., Cao, F. and Liu, F.B. (2022) Prognostic Value of Drug Targets Predicted Using Deep Bioinformatic Analysis of m6A-Associated lncRNA-Based Pancreatic Cancer Model Characteristics and Its Tumour Microenvironment. Frontiers in Genetics, 13, Article ID: 853471.
https://doi.org/10.3389/fgene.2022.853471
[43]  Hu, X., Peng, W., Zhou, H., Jiang, J., Zhou, X., Huang, D., et al. (2020) IGF2BP2 Regulates DANCR by Serving as an N6-Methyladenosine Reader. Cell Death & Differentiation, 27, 1782-1794.
https://doi.org/10.1038/s41418-019-0461-z
[44]  Chen, H., Zhuo, Q., Ye, Z., Xu, X. and Ji, S. (2021) Organoid Model: A New Hope for Pancreatic Cancer Treatment? Biochimica et Biophysica Acta (BBA)—Reviews on Cancer, 1875, Article ID: 188466.
https://doi.org/10.1016/j.bbcan.2020.188466
[45]  Wang, H., Zhao, X. and Lu, Z. (2021) m6A RNA Methylation Regulators Act as Potential Prognostic Biomarkers in Lung Adenocarcinoma. Frontiers in Genetics, 12, Article 622233.
https://doi.org/10.3389/fgene.2021.622233
[46]  Shen, J., Feng, X.P., Hu, R.B., et al. (2021) N-Methyladenosine Reader YTHDF2-Mediated Long Noncoding RNA FENDRR Degradation Promotes Cell Proliferation in Endometrioid Endometrial Carcinoma. Laboratory Investigation, 101, 775-784.
https://doi.org/10.1038/s41374-021-00543-3
[47]  Ban, Y., Tan, P., Cai, J., et al. (2020) LNCAROD Is Stabilized by m6A Methylation and Promotes Cancer Progression via Forming a Ternary Complex with HSPA1A and YBX1 in Head and Neck Squamous Cell Carcinoma. Molecular Oncology, 14, 1282-1296.
https://doi.org/10.1002/1878-0261.12676

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133