|
Material Sciences 2023
先进后处理对重型车超细颗粒排放的影响
|
Abstract:
本文在重型底盘测功机上基于C-WTVC和中国重型商用车辆行驶工况(CHTC),研究了环境温度、工况因素以及先进后处理等关键参数对重型整车气态污染物、超细颗粒物(包括>23 nm和<23 nm)和油耗的影响规律,分析其生成机理,为进一步降低排放和油耗提供理论依据。研究间接表明硫是核膜态颗粒物的主要来源,先进后处理系统形成核膜态颗粒的三要素是催化剂,硫/氨,以及排气温度。环境温度对 > 23 nm的颗粒影响较小,对10~23 nm的颗粒影响显著,这与硝酸铵和硫酸铵的生成条件有关,使用含硫量低的燃料和润滑油可以降低 < 23 nm颗粒数。从总颗粒数上看,10~23 nm部分占总颗粒数的比重较高,包含10~23 nm部分时C-WTVC和CHTC工况在低环境温度时尚可满足当前法规限值,但当环境温度升高,尤其是CHTC工况,总颗粒数会大幅超过限值要求。CHTC低速段时间长,加速工况多是NOx排放和百公里油耗高于C-WTVC的主要原因,低速段急加速工况是今后降低NOx的研究重点,高速段是改善燃油经济性的研究重点。
The paper analyzes the differences between China Heavy-duty Commercial Vehicle Test Cycle (CHTC) and C-WTVC based on cycle characteristic parameters. The heavy-duty diesel vehicles were tested using a chassis dynamometer to character-ize the effect of the ambient temperature, cycle characteristics and aftertreament on the gaseous pollutants and the occurrence of nucleation. Results showed that the occurrence of a nucleation mode could be predicted based on the level of catalyst, the temperature, and the sulfur/ammonia in the aftertreatment. Reducing the sulfur level in fuels and lubricating oil can effectively prevent na-noparticle formation related to particle filters. Ambient temperature has no influence on the >23 nm particle number emissions, but has significant effect on particles of 10~23 nm, this is related to the formation of ammonium nitrate and ammonium sulfate. The 10~23 nm part accounts for a high proportion of the total particle number. Including the 10~23 nm part, the C-WTVC and CHTC can meet the current regulations at low ambient temperature, but when the ambient temperature rises, especially CHTC, the total particle number will greatly exceed the limit. CHTC’s NOx and fuel con-sumption are higher than that of C-WTVC due to its longer low-speed period and more acceleration and deceleration conditions. CHTC’s low-speed acceleration cycles are the focus of research to re-duce NOx emissions, and the high speed cycles are the focus of research to improve fuel economy.
[1] | The European Commission (2018) Cleaner Air for All. Environment-European Commission.
http://ec.europa.eu/environment/air/cleaner_air/ |
[2] | EEA (2018) Air Quality in Europe—2018 Report. European Environment Agency Report No. 12/2018. European Environment Agency, Copenhagen. |
[3] | Sowman, J., Box, S., Wong, A., Grote, M., Laila, D.S., Gillam, G., Cruden, A.J., Preston, J.M. and Fussey, P. (2018) In-Use Emissions Testing of Diesel-Driven Buses in Southampton: Is Selective Catalytic Reduction as Effective as Fleet Operators Think? IET Intelligent Transport Systems, 12, 521-526. https://doi.org/10.1049/iet-its.2017.0173 |
[4] | Muncrief, R. and Sharpe, T. (2015) Overview of the Heavy-Duty Vehicle Market and CO2 Emissions in the European Union. The Interna-tional Council on Clean Transportation Working Paper 2015-6. International Council on Clean Transportation. |
[5] | 生态环境部发布《中国移动源环境管理年报(2019)》[EB/OL].
http://www.gov.cn/xinwen/2019-09/05/content_5427449.htm, 2019-09-05. |
[6] | Mendoza-Villafuerte, P., Sua-rez-Bertoa, R., Giechaskiel, B., Riccobono, F., Bulgheroni, C., Astorga, C. and Perujo, A. (2017) NOx, NH3, N2O and PN Real Driving Emissions from a Euro VI Heavy-Duty Vehicle. Impact of Regulatory on-Road Test Conditions on Emissions. Science of the Total Environment, 609, 546-555.
https://doi.org/10.1016/j.scitotenv.2017.07.168 |
[7] | Muncrief, R. (2016) NOx Emissions from Heavy-Duty and Light-Duty Diesel Vehicles in the EU: Comparison of Real-World Performance and Current Type-Approval Require-ments. The International Council on Clean Transportation. |
[8] | 闫祯, 王兆, 郑天雷, 等. 不同工况下重型商用车燃料消耗量模拟计算结果对比研究[J]. 中国汽车(英文版), 2019(2): 39-43, 38. |
[9] | 宋子钰, 陶云飞, 张晖, 等. CHTC与C-WTVC工况油耗和排放的试验研究[J]. 汽车技术, 2020(6): 51-57. |
[10] | GB/T 38146.2-2019. 中国汽车行驶工况 第2部分: 重型商用车辆[S]. |
[11] | 2022年百人会论坛/商用车可持续发展论坛[EB/OL].
https://autogasgoo.com/news/202203/29170295739C1206.shtml, 2020-03-27. |
[12] | Bagley, S.T., Baumgard, K.J., Gratz, L.D., Johnson, J.H., and Leddy, D.G. (1996) Characterization of Fuel and Aftertreatment Device Effects on Diesel emissions Research Report No. 76. Health Effects Institute, Massachusetts. |
[13] | Vaaraslahti, K., Virtanen, A., Ristimaki, J. and Keskinen, J. (2004) Nucleation Mode Formation in Heavy-Duty Diesel Exhaust with and without a Par-ticulate Filter. Environmental Science & Technology, 38, 4884-4890.
https://doi.org/10.1021/es0353255 |
[14] | Herner, J.D., Hu, S., Robertson, W.H., Huai, T., Collins, J.F., Dwyer, H. and Ayala, A. (2009) Effect of Advanced Aftertreatment for PM and NOx Control on Heavy-Duty Diesel Truck Emis-sions. Environmental Science & Technology, 43, 5928-5933. https://doi.org/10.1021/es9008294 |
[15] | Kittelson, D.B., Watts, W.F., Johnson, J.P., Thorne, C., Higham, C., Payne, M., Goodier, S., Warrens, C., Preston, H., Zink, U., Pickles, D., Goersmann, C., Twigg, M.V., Walker, A.P. and Boddy, R. (2008) Effect of Fuel and Lube Oil Sulfur on the Performance of a Diesel Exhaust Gas Continuously Regenerating Trap. Environmental Science & Technology, 42, 9276-9282. https://doi.org/10.1021/es703270j |
[16] | Ma, H., Jung, H. and Kittelson, D.B. (2008) Investigation of Diesel Nanoparticle Nucleation Mechanisms. Aerosol Science and Technology, 42, 335-342. https://doi.org/10.1080/02786820802072717 |
[17] | Swanson, J.J., Kittelson, D.B., Watts, W.F., Gladis, D.D. and Twigg, M.V. (2009) Influence of Storage and Release on Particle Emissions from New and Used CRTs. Atmospheric Environment, 43, 3998-4004.
https://doi.org/10.1016/j.atmosenv.2009.05.019 |
[18] | Vaaraslahti, K., Keskinen, J., Giechaskiel, B., Solla, A., Mur-tonen, T. and Vesala, H. (2005) Effect of Lubricant on the Formation of Heavy-Duty Diesel Exhaust Nanoparticles. En-vironmental Science & Technology, 39, 8497-8504.
https://doi.org/10.1021/es0505503 |
[19] | Vaaraslahti, K., Virtanen, A., Ristim?ki, J. and Keskinen, J. (2004) Nuclea-tion Mode Formation in Heavy-Duty Diesel Exhaust with and without a Particulate Filter. Environmental Science & Technology, 38, 4884-4890.
https://doi.org/10.1021/es0353255 |
[20] | Liu, Z.G., Berg, D.R., Swor, T A. and Schauer, J.J. (2008) Comparative Analysis on the Effects of Diesel Particulate Filter and Selective Catalytic Reduction Systems on a Wide Spectrum of Chemical Species Emissions. Environmental Science & Technology, 42, 6080-6085. https://doi.org/10.1021/es8004046 |
[21] | Vaaraslahti, K., Virtanen, A., Ristim?ki, J., and Keskinen, J. (2004) Effect of After-Treatment Systems on Size Distribution of Heavy Duty Diesel Exhaust Aerosol. SAE Technical Paper 2004-01-1980, SAE International, Warrendale.
https://doi.org/10.4271/2004-01-1980 |
[22] | Lee, C., Oh, K., Kim, D. and Lee, C. (2007) A Characteristics of Parti-cle Number Distribution for the Urea Solution Injection to Urea SCR System of Commercial Diesel Engine for an Emis-sion Regulation. SAE Technical Paper 2007-01-3455, SAE International, Warrendale. https://doi.org/10.4271/2007-01-3455 |
[23] | Thompson, N., Ntziachristos, L., Samaras, Z., Paivi, A., Wass, U., Hausberger, S. and Sams, T. (2004) Overview of the European “Particulates” Project on the Characterization of Exhaust Particulate Emissions from Road Vehicles: Results for Heavy Duty Engines. SAE Technical Paper 2004-01-1986, SAE International, Warrendale.
https://doi.org/10.4271/2004-01-1986 |
[24] | Lee, S., Cho, Y., Song, M., Kim, H., Park, J. and Baik, D. (2012) Ex-perimental Study on the Characteristics of Nano-Particle Emissions from a Heavy-Duty Diesel Engine Using a Urea-SCR System. International Journal of Automotive Technology, 13, 355-363. https://doi.org/10.1007/s12239-012-0033-4 |
[25] | Herner, J.D., Hu, S., Robertson, W.H., Huai, T., Chang, M.C.O., Rieger, P. and Ayala, A. (2011) Effect of Advanced Aftertreatment for PM and NOx Reduction on Heavy-Duty Diesel Engine Ultrafine Particle Emissions. Environmental Science & Technology, 45, 2413-2419. https://doi.org/10.1021/es102792y |
[26] | Biswas, S., Hu, S., Verma, V., Herner, J.D., Robertson, W.H., Ayala, A. and Sioutas, C. (2008) Physical Properties of Particulate Matter (PM) From Late Model Heavy-Duty Diesel Vehicles Operating With Advanced Pm and NOx Emission Control Technologies. Atmospheric Environment, 42, 5622-5634. https://doi.org/10.1016/j.atmosenv.2008.03.007 |
[27] | Thiruvengadam, A., Besch, M.C., Carder, D.K., Oshinuga, A. and Gautam, M. (2011) Influence of Real-World Engine Load Conditions on Nanoparticle Emissions from a DPF and SCR Equipped Heavy-Duty Diesel Engine. Environmental Science & Technology, 46, 1907-1913. https://doi.org/10.1021/es203079n |
[28] | Czerwinski, J., Zimmerli, Y., Mayer, A. and Heeb, N. (2009) Testing of Combined DPF+SCR Systems for HD-Retro- fitting—VERTdePN. SAE Technical Paper 2009-01-0284, SAE Interna-tional, Warrendale.
https://doi.org/10.4271/2009-01-0284 |
[29] | Khalek, I., Blanks, M. and Merritt, P. (2013) CRC Report: Phase 2 of the Advanced Collaborative Emissions Study. Coordinating Research Council, Inc., Alpharetta. |
[30] | Giechaskiel, B., Riccobono, F., Vlachos, T., Mendoza-Villafuerte, P., Suarez-Bertoa, R., Fontaras, G., Bonnel, P. and Weiss, M. (2015) Vehicle Emission Factors of Solid Nanoparticles in the Laboratory and on the Road Using Portable Emission Measure-ment Systems (PEMS). Frontiers in Environmental Science, 3, Article 82.
https://doi.org/10.3389/fenvs.2015.00082 |
[31] | Mathis, U., Mohr, M. and Forss, A. (2005) Comprehensive Particle Characterization of Modern Gasoline and Diesel Passenger Cars at Low Ambient Temperatures. Atmospheric Environ-ment, 39, 107-117.
https://doi.org/10.1016/j.atmosenv.2004.09.029 |
[32] | Ristim?ki, J., Keskinen, J., Virtanen, A., Maricq, M. and Aakko, P. (2005) Cold Temperature PM Emissions Measurement:? Method Evaluation and Application to Light Duty Vehicles. Environmental Science & Technology, 39, 9424-9430. https://doi.org/10.1021/es050578e |
[33] | Book, E., Snow, R., Long, T., Fang, T. and Baldauf, R. (2015) Temperature Effects on Particulate Emissions from DPF-Equipped Diesel Trucks Operating on Conventional and Biodiesel Fuels. Journal of the Air & Waste Management Association, 65, 751-758. https://doi.org/10.1080/10962247.2014.984817 |
[34] | Dardiotis, C., Martini, G., Marotta, A. and Manfredi, U. (2013) Low-Temperature Cold-Start Gaseous Emissions of Late Technology Passenger Cars. Applied En-ergy, 111, 468-478. https://doi.org/10.1016/j.apenergy.2013.04.093 |
[35] | Giechaskiel, B., Mamakos, A., Andersson, J., Dilara, P., Martini, G., Schindler, W. and Bergmann, A. (2012) Measurement of Automotive Nonvolatile Particle Number Emissions within the European Legislative Framework: A Review. Aerosol Science and Technology, 46, 719-749. https://doi.org/10.1080/02786826.2012.661103 |
[36] | Giechaskiel, B., Vanhanen, J., V?kev?, M. and Mar-tini, G. (2017) Investigation of Vehicle Exhaust Sub-23 nm Particle Emissions. Aerosol Science and Technology, 51, 626-641. https://doi.org/10.1080/02786826.2017.1286291 |
[37] | Robinson, M., Backhaus, J., Foley, R. and Liu, G. (2016) The Effect of Diesel Exhaust Fluid Dosing on Tailpipe Particle Number Emissions. SAE Technical Paper 2016-01-0995, SAE International, Warrendale.
https://doi.org/10.4271/2016-01-0995 |
[38] | Amanatidis, S., Ntziachristos, L., Giechaskiel, B., Bergmann, A. and Samaras, Z. (2014) Impact of Selective Catalytic Reduction on Exhaust Particle Formation over Excess Ammonia Events. Environmental Science & Technology, 48, 11527-11534. https://doi.org/10.1021/es502895v |
[39] | Lehtoranta, K., Murtonen, T., Vesala, H., Alanen, J., Simonen, P., R?nkk?, T., Timonen, H., Saarikoski, S., Maunula, T., Kallinen, K., et al. (2017) Natural Gas Engine Emission Reduction by Catalysts. Emission Control Science and Technology, 3, 142-152. https://doi.org/10.1007/s40825-016-0057-8 |