全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

RuO2/TiO2催化剂在Deaon反应中的研究现状
Research Status of RuO2/TiO2 Catalyst in Deaon Reaction

DOI: 10.12677/MS.2023.133020, PP. 160-168

Keywords: Deacon反应,RuO2,TiO2,氯化氢
Deacon Reaction
, RuO2,TiO2, Hydrogen Chloride

Full-Text   Cite this paper   Add to My Lib

Abstract:

Cl2是一种重要的化工产品和原料,其生产过程中产生了大量副产物氯化氢,造成氯资源的浪费。Deacon工艺是解决大量副产物HCl的有效方法,是氯资源“高效–清洁–循环”的重要途径之一。RuO2/TiO2催化剂具有优异的反应性能,是研究者研究的热点之一,且已在工业中应用。但是RuO2/TiO2催化剂也存在成本高和高温烧结的问题,如何降低Ru的负载量、提高反应活性和反应的稳定性是未来的重要研究方向。本文主要综述用于Deacon工艺的RuO2/TiO2催化剂最新的研究进展,介绍催化剂的反应机理、目前提高催化剂活性和稳定性的研究,并对其未来的发展进行展望。
Cl2 is an important chemical product and raw material, and a large amount of by-product hydrogen chloride is produced in its production process, resulting in the waste of chlorine resources. Deacon process is an effective method to solve a large number of by-products HCl, and it is one of the important ways of “efficient-clean-recycling” chlorine resources.RuO2/TiO2 catalyst has excellent reac-tion performance, which is one of the hot spots studied by researchers and has been applied in industry. But RuO2/TiO2 catalyst also exists high cost and high temperature sintering, how to reduce the loading of Ru, improve the reaction activity and stability is an important research direction in the future. In this paper, the latest research progress of RuO2/TiO2 catalyst used in Deacon process is reviewed, the reaction mechanism of the catalyst, the research on improving the activity and stability of the catalyst are introduced, and its future development is prospected.

References

[1]  Pérez-Ramírez, J., Mondelli, C., Schmidt, T., Schlüter, O.F.K., Wolf, A., Mleczko, L. and Dreier, T. (2011) Sustainable Chlorine Recycling via Catalysed HCl Oxidation: From Fundamentals to Implementation. Energy & Environmental Sci-ence, 4, 4786-4799.
https://doi.org/10.1039/c1ee02190g
[2]  Till, Z., Varga, T., Réti, J. and Chován, T. (2017) Op-timization Strategies in a Fixed-Bed Reactor for HCl Oxidation. Industrial & Engineering Chemistry Research, 56, 5352-5359.
https://doi.org/10.1021/acs.iecr.7b00750
[3]  Su, S., Mannini, D., Metiu, H., Gordon, M.J. and McFarland, E.W. (2018) Chlorine Production by HCl Oxidation in a Molten Chloride Salt Catalyst. Industrial & Engi-neering Chemistry Research, 57, 7795-7801.
https://doi.org/10.1021/acs.iecr.8b01141
[4]  López, N., Gómez-Segura, J., Marín, R.P. and Pérez-Ramírez, J. (2008) Mechanism of HCl Oxidation (Deacon Process) over RuO2. Journal of Catalysis, 255, 29-39.
https://doi.org/10.1016/j.jcat.2008.01.020
[5]  Wang, Y., Liu, Y., Wiley, D., Zhao, S. and Tang, Z. (2021) Recent Advances in Electrocatalytic Chloride Oxidation for Chlorine Gas Production. Journal of Materials Chemistry A, 9, 18974-18993.
https://doi.org/10.1039/D1TA02745J
[6]  Moussallem, I., J?rissen, J., Kunz, U., Pinnow, S. and Turek, T. (2008) Chlor-Alkali Electrolysis with Oxygen Depolarized Cathodes: History, Present Status and Future Pro-spects. Journal of Applied Electrochemistry, 38, 1177-1194.
https://doi.org/10.1007/s10800-008-9556-9
[7]  王大壮, 刘国桢. 制氯技术对比与氧化制氯技术展望[J]. 中国氯碱, 2013(5): 22-26.
[8]  Suzuta, T., Nakada, M. and Mori, Y. (2004) The Development of Improved Hydrogen Chloride Oxidation Process. Sumitomo Kagaku, 1, 1-11.
[9]  Ding, J., Hua, W., Zhang, H. and Lou, Y. (2013) The Development and Application of Two Chlorine Recycling Technologies in Polyurethane Industry. Journal of Cleaner Production, 41, 97-104.
https://doi.org/10.1016/j.jclepro.2012.09.020
[10]  刘琦琦, 赵世杰, 刘潇, 李天文. 副产氯化氢制氯气研究进展[J]. 山东化工, 2018, 47(16): 57-59.
[11]  Feng, K.K., Li, C.W., Guo, Y.L., Zhan, W.C., Ma, B., Chen, B., Yuan, M. and Lu, G. (2015) An Efficient Cu-K-La/γ-Al2O3 Catalyst for Catalytic Oxidation of Hydrogen Chloride to Chlorine. Ap-plied Catalysis B: Environmental, 164, 483-487.
https://doi.org/10.1016/j.apcatb.2014.09.063
[12]  Hishamf, M. and Benson, S.W. (1995) Thermochemistry of the Deacon Process. The Journal of Physical Chemistry, 99, 6194-6198.
https://doi.org/10.1021/j100016a065
[13]  Amrute, A.P., Larrazabal, G.O., Mondelli, C. and Perez-Ramirez, J. (2013) CuCrO2 Delafossite: A Stable Copper Catalyst for Chlorine Production. Angewandte Chemie International Edi-tion, 52, 9772-9775.
https://doi.org/10.1002/anie.201304254
[14]  Sun Y., Li, C., Guo, Y., Zhan, W., Guo, Y., Wang, L., Wang, Y. and Lu, G. (2018) Catalytic Oxidation of Hydrogen Chloride to Chlorine over Cu-K-Sm/γ-Al2O3 Catalyst with Excellent Cat-alytic Performance. Catalysis Today, 307, 286-292.
https://doi.org/10.1016/j.cattod.2017.04.014
[15]  Amrute, A.P., Mondelli, C. and Pérez-Ramírez, J. (2012) Kinetic Aspects and Deactivation Behaviour of Chromia-Based Catalysts in Hydrogen Chloride Oxidation. Catalysis Science & Technology, 2, 2057-2065.
https://doi.org/10.1039/c2cy20185b
[16]  Amrute, A.P., Mondelli, C., Hevia, M.A.G. and Pérez-Ramírez, J. (2011) Mechanism-Performance Relationships of Metal Oxides in Catalyzed HCl Oxidation. ACS Catalysis, 1, 583-590.
https://doi.org/10.1021/cs200075j
[17]  Kondratenko, E.V., Amrute, A.P., Pohl, M.-M., Steinfeldt, N., Mondelli, C. and Pérez-Ramírez, J. (2013) Superior Activity of Rutile-Supported Ruthenium Nanoparticles for HCl Oxidation. Catal-ysis Science & Technology, 3, 2555-2558.
https://doi.org/10.1039/c3cy00372h
[18]  Li, C., Sun, Y., Hess, F., Djerdj, I., Sann, J., Voepel, P., Cop, P., Guo, Y., Smarsly, B.M. and Over, H. (2018) Catalytic HCl Oxidation Reaction: Stabilizing Effect of Zr-Doping on CeO2 Nano-Rods. Applied Catalysis B: Environmental, 239, 628-635.
https://doi.org/10.1016/j.apcatb.2018.08.047
[19]  Sun, Y., Cop, P., Djerdj, I., Guo, X., Weber, T., Khalid, O., Guo, Y., Smarsly, B.M. and Over, H. (2019) CeO2 Wetting Layer on ZrO2 Particle with Sharp Solid Interface as Highly Ac-tive and Stable Catalyst for HCl Oxidation Reaction. ACS Catalysis, 9, 10680-10693.
https://doi.org/10.1021/acscatal.9b03482
[20]  Sun, Y., Hess, F., Djerdj, I., Wang, Z., Weber, T., Guo, Y., Smarsly, B.M. and Over, H. (2020) Reactivation of CeO2-Based Catalysts in the HCl Oxidation Reaction: In Situ Quantification of the Degree of Chlorination and Kinetic Modeling. ChemCatChem, 12, 5511-5522.
https://doi.org/10.1002/cctc.202000907
[21]  潘喜强, 曾清湖, 李玉洁, 王瑞, 高亚娜, 李飞. 钌基Deacon催化剂的研究进展[J]. 工业催化, 2016, 24(7): 21-26.
[22]  Over, H. (2012) Atomic-Scale Understanding of the HCl Oxi-dation over RuO2, a Novel Deacon Process. The Journal of Physical Chemistry C, 116, 6779-6792.
https://doi.org/10.1021/jp212108b
[23]  Xu, X., Sun, X., Sun, B., Peng, H., Liu, W. and Wang, X. (2016) O2 Ad-sorption on MO2 (M = Ru, Ir, Sn) Films Supported on Rutile TiO2(110) by DFT Calculations: Probing the Nature of Metal Oxide-Support Interaction. Journal of Colloid and Interface Science, 473, 100-111.
https://doi.org/10.1016/j.jcis.2016.03.059
[24]  Mondelli, C., Amrute, A.P., Krumeich, F., Schmidt, T. and Pé-rez-Ramírez, J. (2011) Shaped RuO2/SnO2-Al2O3 Catalyst for Large-Scale Stable Cl2 Production by HCl Oxidation. ChemCatChem, 3, 657-660.
https://doi.org/10.1002/cctc.201000424
[25]  Amrute, A.P., Mondelli, C., Schmidt, T., Hauert, R and Pérez-Ramírez, J. (2013) Industrial RuO2-Based Deacon Catalysts: Carrier Stabilization and Active Phase Content Optimization. Chem-CatChem, 5, 748-756.
https://doi.org/10.1002/cctc.201200704
[26]  Xiang, G., Shi, X., Wu, Y., Zhuang, J. and Wang, X. (2012) Size Ef-fects in Atomic-Level Epitaxial Redistribution Process of RuO2 over TiO2. Scientific Reports, 2, Article No. 801.
[27]  Wang, X., Liu, Y.P., Xu, C.H., Lu, X., Ma, R., Fu, Y.H., Wang, S. and Zhu, W. (2021) Effects of the Sup-port-Crystal Size on the Catalytic Performance of RuO2/TiO2 in the Deacon Process. Catalysis Letters, 151, 2346-2354.
https://doi.org/10.1007/s10562-020-03493-5
[28]  Lin, Q., Huang, Y., Wang, Y., Li, L., Liu, X.Y., Lu, F., Wang, A., Li, W.C. and Zhang, T. (2014) RuO2/Rutile-TiO2: A Superior Catalyst for N2O Decomposition. Journal of Materials Chemistry A, 2, 5178-5181.
https://doi.org/10.1039/C3TA15454H
[29]  辛旭. TiO2的微结构调控及其负载RuO2催化氧化HCl[D]: [硕士学位论文]. 金华: 浙江师范大学, 2021.
[30]  Shi, J., Hui, F., Yuan, J., Yu, Q., Mei, S., Zhang, Q., Li, J., Wang, W., Yang, J and Lu, J. (2019) Ru-Ti Oxide Based Catalysts for HCl Oxidation: The Favorable Oxygen Species and Influence of Ce Additive. Catalysts, 9, 108-123.
https://doi.org/10.3390/catal9020108
[31]  Xu, X., Liu, F., Huang, J., Luo, W., Yu, J., Fang, X., Lebedeva, O.E. and Wang, X. (2019) The Influence of RuO2 Distribution and Dispersion on the Reactivity of RuO2-SnO2 Composite Oxide Catalysts Probed by CO Oxidation. ChemCatChem, 11, 2473-2483.
https://doi.org/10.1002/cctc.201802095
[32]  Seki, K. (2010) Development of RuO2/Rutile-TiO2 Catalyst for Indus-trial HCl Oxidation Process. Catalysis Surveys from Asia, 14, 168-175.
https://doi.org/10.1007/s10563-010-9091-7
[33]  楼家伟, 李磊, 费兆阳, 徐希化, 陈献, 汤吉海, 崔咪芬, 乔旭. 载体焙烧温度对RuO2/TiO2催化HCl氧化性能的影响[J]. 分子催化, 2017, 31(3): 215-222.
[34]  Gong, Y.F., Liu, R.X., Jiang, L.Y., Peng, A.N., Xu, C., Lu, X., Ma, R., Fu, Y.H., Zhu, W.D., Wang, S. and Zhou, L. (2022) Catalyst Development for HCl Oxidation to Cl2 in the Fluorochemical Industry. ACS Catalysis, 12, 1098-1110.
https://doi.org/10.1021/acscatal.1c04783
[35]  潘喜强, 李玉洁, 王瑞, 高亚娜, 曾清湖, 李飞. RuO2/MOx-TiO2 (M = Ce、Mn、La、Zr、Co)催化剂制备及其氯化氢氧化性能[J]. 工业催化, 2018, 2(26): 71-76.
[36]  Vásquez, G.C., Peche-Herrero, M.A., Maestre, D., Cremades, A., Ramírez-Castellanos, J., González-Calbet, J.M. and Piqueras, J. (2013) Effects of Transition Metal Doping on the Growth and Properties of Rutile TiO2 Nanoparticles. The Journal of Physical Chemistry C, 117, 1941-1947.
https://doi.org/10.1021/jp3101656
[37]  Li, J.-G., Isobe, R.B.M., Mori, T. and Ishi-gaki, T. (2009) Cobalt-Doped TiO2 Nanocrystallites: Radio-Frequency Thermal Plasma Processing. Phase Structure, and Magnetic Properties, 113, 8009-8015.
https://doi.org/10.1021/jp8080047
[38]  高明明, 程杰, 张威, 万克柔, 张炳亮, 晁哲, 郑金欣. 载体焙烧温度对RuO2/Al2O3-TiO2催化HCl氧化性能的影响[J]. 工业催化, 2022, 30(8): 36-39.
[39]  黄雅琦. RuO2/TiO2催化剂载体金属掺杂的Deacon反应研究[D]: [硕士学位论文]. 金华: 浙江师范大学, 2022.
[40]  Gardecka, A.J., Lübke, M., Armer, C.F., Ning, D., Reddy, M.V., Williams, A.S., Lowe, A., Liu, Z., Parkin, I.P. and Darr, J.A. (2018) Nb-Doped Rutile Titanium Dioxide Nanorods for Lithium-Ion Batteries. Solid State Sciences, 83, 115-121.
https://doi.org/10.1016/j.solidstatesciences.2018.07.004
[41]  Usui, H., Domi, Y., Yoshioka, S., Kojima, K. and Sakaguchi, H. (2016) Electrochemical Lithiation and Sodiation of Nb-Doped Rutile TiO2. ACS Sustainable Chemistry & Engineering, 4, 6695-6702.
https://doi.org/10.1021/acssuschemeng.6b01595
[42]  Pan, Y., Shen, X., Yao L., Bentalib, A. and Peng, Z. (2018) Active Sites in Heterogeneous Catalytic Reaction on Metal and Metal Oxide: Theory and Practice. Catalysts, 8, 479-498.
https://doi.org/10.3390/catal8100478
[43]  Xiao, C., Qi, Z., Goes, S., Brashler, K., Perez, C. and Huang, W. (2015) Conversion of Levulinic Acid to γ-Valerolactone over Few-Layer Graphene-Supported Ruthenium Catalysts. ACS Ca-talysis, 6, 593-599.
https://doi.org/10.1021/acscatal.5b02673
[44]  Kusada, K., Kobayashi, H., Yamamoto, T., Matsumura, S., Sumi, N., Sato, K., Nagaoka, K., Kubota, Y. and Kitagawa, H. (2013) Discovery of Face-Centered-Cubic Ruthenium Nanoparticles: Facile Size-Controlled Synthesis Using the Chemical Reduction Method. Journal of the American Chemical Society, 135, 5493-5496.
https://doi.org/10.1021/ja311261s
[45]  刘瑞新. RuO2/TiO2催化剂在HCl催化氧化反应中的粒径效应及活性位辨认[D]: [硕士学位论文]. 金华: 浙江师范大学, 2022.
[46]  Debecker, D.P., Farin, B., Gaigneaux, E.M., Sanchez, C. and Sassoye, C. (2014) Total Oxidation of Propane with a Nano-RuO2/TiO2 Catalyst. Applied Catalysis A: General, 481, 11-18.
https://doi.org/10.1016/j.apcata.2014.04.043
[47]  Sassoye, C., Muller, G., Debecker, D. P., Karelovic, A., Cassaignon, S., Pizarro, C., Ruiz, P. and Sanchez, C. (2011) A Sustainable Aqueous Route to Highly Stable Suspensions of Monod Ispersed Nano Ruthenia. Green Chemistry, 13, 3230-3237.
https://doi.org/10.1039/c1gc15769h
[48]  Zhang, J., Ding, J., Li, C.Q., Li, B. J., Li, D., Liu, Z. Y., Cai, Q., Zhang, J.M. and Liu, Y.S. (2017) Fabrication of Novel Termary Three-Dimensional RuO2/Graphitic-C3N4@ Reduced Graphene Oxide Aerogel Composites for Supercapacitors. ACS Sustainable Chemistry & Engineering, 5, 4982-4991.
https://doi.org/10.1021/acssuschemeng.7b00358
[49]  Jiao, Y.C., Jiang, H.L. and Chen, F. (2014) RuO2/TiO2/Pt Ternary Photocatalysts with Epitaxial Heterojunction and Their Application in CO Oxidation. ACS Catalysis, 4, 2249-2257.
https://doi.org/10.1021/cs5001174
[50]  Morais, E., O’modhrain, C., Thampi, K.R. and Sullivan, J.A. (2021) RuO2/TiO2 Photocatalysts Prepared via a Hydrothermal Route: Influence of the Presence of TiO2 on the Reactivity of RuO2 in the Artificial Photosynthesis Reaction. Journal of Catalysis, 401, 288-296.
https://doi.org/10.1016/j.jcat.2021.08.007
[51]  Shi, J., Li, J., Ma, H., Tu, D., Zhang, Q., Mao, W., Yang, J. and Lu, J. (2021) HCl Catalytic Oxidation over Ru/Ti-Sn Oxide Catalysts: The Influence of Supports’ Crystal and Surface Struc-tures on Catalytic Performance. Applied Surface Science, 570, 151137-151147.
https://doi.org/10.1016/j.apsusc.2021.151137
[52]  Liu, Y., Li, S., Lu, X., Ma, R., Fu, Y., Wang, S., Zhou, L. and Zhu, W. (2021) Insights into the Sintering Resistance of RuO2/TiO2-SiO2 in the Deacon Process: Role of SiO2. Catalysis Science & Technology, 11, 5460-5466.
https://doi.org/10.1039/D1CY01023A
[53]  Capdevila-Cortada, M., Vilé, G., Teschner, D., Pérez-Ramírez, J. and López, N. (2016) Reactivity Descriptors for Ceria in Catalysis. Applied Catalysis B: Environmental, 197, 299-312.
https://doi.org/10.1016/j.apcatb.2016.02.035
[54]  Nguyen-Phanv, T.D., Luo, S., Vovchok, D., Llorca, J., Sallis, S., Kattel, S., Xu, W., Piper. L.F., Polyansky, D.E., Senanayake, S.D., Stacchiola, D.J. and Rodriguez, J.A. (2016) Three-Dimensional Ruthenium-Doped TiO2 Sea Urchins for Enhanced Visible-Light-Responsive H2 Production. Physi-cal Chemistry Chemical Physics, 18, 15972-15979.
https://doi.org/10.1039/C6CP00472E

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133