|
Material Sciences 2023
磺化碳制备方法的研究进展
|
Abstract:
“磺化碳”作为一种无金属固体质子酸,由于其与浓硫酸相当的布朗斯台德酸度,低生产成本以及可定制的孔结构,它们被认为是液态硫酸的潜在代替品。在催化领域,特别是对于生物质和大分子的催化转化,其性能优于传统的固体酸催化剂(阳离子交换树脂,硫酸化氧化物和酸性沸石)。在磺化碳的制备过程中最关键的步骤是磺化,碳前体通过该步骤使得碳骨架上拥有磺酸基团。经过多年的研究,目前已经开发并优化出许许多多的磺化方法,这些方法大致可分为原位官能化法和后接枝官能化法,两种方法对磺化碳的结构和表面性质有着直接的影响。本文主要总结论述了制备磺化碳方法的研究进展。
As a metal-free solid protic acid, “sulfonated carbons” are considered as po-tential substitutes for liquid sulfuric acid due to their Brownsted acidity, low production costs, and customizable pore structure. In the field of catalysis, especially for the catalytic conversion of bio-mass and macromolecules, its performance is better than that of traditional solid acid catalysts (cation exchange resins, sulfated oxides and acid zeolite). The most critical step in the preparation of sulfonated carbon is sulfonation, through which the carbon precursor has sulfonic acid groups on the carbon skeleton. After many years of research, many sulfonation methods have been developed and optimized. These methods can be roughly divided into in situ functionalization method and grafting functionalization method. The two methods have direct effects on the structure and surface properties of sulfonated carbon. The research progress of preparation of sulfonated carbon is sum-marized in this paper.
[1] | Hara, M. (2010) Biomass Conversion by a Solid Acid Catalyst. Energy & Environmental Science, 3, 601-607.
https://doi.org/10.1039/b922917e |
[2] | Nakajima, K. and Hara, M. (2012) Amorphous Carbon with SO3H Groups as a Solid Br?nsted Acid Catalyst. ACS Catalysis, 2, 1296-1304. https://doi.org/10.1021/cs300103k |
[3] | Okamura, M., Takagaki, A., Toda, M., Kondo, J.N., Domen, K., Tatsumi, T., Hara, M. and Hayashi, S. (2006) Acid-Catalyzed Re-actions on Flexible Polycyclic Aromatic Carbon in Amorphous Carbon. Chemistry of Materials, 18, 3039-3045. https://doi.org/10.1021/cm0605623 |
[4] | Shen, Y. and Chen, B. (2015) Sulfonated Graphene Nanosheets as a Su-perb Adsorbent for Various Environmental Pollutants in Water. Environmental Science & Technology, 49, 7364-7372. https://doi.org/10.1021/acs.est.5b01057 |
[5] | Sun, Y., Zhao, J., Wang, J., Tang, N., Zhao, R., Zhang, D., Guan, T. and Li, K. (2017) Sulfur-Doped Millimeter-Sized Microporous Activated Carbon Spheres Derived from Sulfonated Poly(styrene-divinylbenzene) for CO2 Capture. The Journal of Physical Chemistry C, 121, 10000-10009. https://doi.org/10.1021/acs.jpcc.7b02195 |
[6] | choi, Y., Kim, Y., Kang, K.Y. and Lee, J.S. (2011) A Composite Electrolyte Membrane Containing High-Content Sulfonated Carbon Spheres for Proton Exchange Membrane Fuel Cells. Carbon, 49, 1367-1373.
https://doi.org/10.1016/j.carbon.2010.11.056 |
[7] | Imaizumi, S., Matsumoto, H., Ashizawa, M., Minagawa, M. and Tanioka, A. (2012) Nanosize Effects of Sulfonated Carbon Nanofiber Fabrics for High Capacity Ion-Exchanger. RSC Advances, 2, 3109-3114.
https://doi.org/10.1039/c2ra20103h |
[8] | Liu, J., Xue, Y. and Dai, L. (2012) Sulfated Graphene Oxide as a Hole-Extraction Layer in High-Performance Polymer Solar Cells. The Journal of Physical Chemistry Letters, 3, 1928-1933. https://doi.org/10.1021/jz300723h |
[9] | Hara, M., Yoshida, T., Takagaki, A., Takata, T., Kondo, J.N., Hayashi, S. and Domen, K. (2004) A Carbon Material as a Strong Protonic Acid. Angewandte Chemie International Edi-tion, 43, 2955-2958.
https://doi.org/10.1002/anie.200453947 |
[10] | Toda, M., Takagaki, A., Okamura, M., Kondo, J.N., Hayashi, S., Domen, K. and Hara, M. (2005) Biodiesel Made with Sugar Catalyst. Nature, 438, 178-178. https://doi.org/10.1038/438178a |
[11] | Lam, E. and Luong, J.H.T. (2014) Carbon Materials as Catalyst Supports and Catalysts in the Transformation of Biomass to Fuels and Chemicals. ACS Catalysis, 4, 3393-3410. https://doi.org/10.1021/cs5008393 |
[12] | Yu, X., Peng, L., Gao, X., He, L. and Chen, K. (2018) One-Step Fabrica-tion of Carbonaceous Solid Acid Derived from Lignosulfonate for the Synthesis of Biobased Furan Derivatives. RSC Advances, 8, 15762-15772.
https://doi.org/10.1039/C8RA02056F |
[13] | Rokhum, S.L., Changmai, B., Kress, T. and Wheatley, A.E.H. (2022) A One-Pot Route to Tunable Sugar-Derived Sulfonated Carbon Catalysts for Sustainable Production of Biodiesel by Fatty Acid Esterification. Renewable Energy, 184, 908-919. https://doi.org/10.1016/j.renene.2021.12.001 |
[14] | Saikia, K., Rajkumari, K., Moyon, N.S., Basumatary, S., Halder, G., Rashid, U. and Rokhum, S.L. (2022) Sulphonated bio-mass-Based Catalyst for Solketal Synthesis by Acetalization of Glycerol—A Byproduct of Biodiesel Production. Fuel Processing Technology, 238, Article ID: 107482. https://doi.org/10.1016/j.fuproc.2022.107482 |
[15] | Zhang, B., Ren, J., Liu, X., Guo, Y., Guo, Y., Lu, G. and Wang, Y. (2010) Novel Sulfonated Carbonaceous Materials from p-Toluenesulfonic Acid/Glucose as a High-Performance Solid-Acid Catalyst. Catalysis Communications, 11, 629-632.
https://doi.org/10.1016/j.catcom.2010.01.010 |
[16] | Shen, F., Guo, T., Bai, C., Qiu, M. and Qi, X. (2018) Hydroly-sis of Cellulose with One-Pot Synthesized Sulfonated Carbonaceous Solid Acid. Fuel Processing Technology, 169, 244-247. https://doi.org/10.1016/j.fuproc.2017.10.015 |
[17] | Malins, K., Kampars, V., Brinks, J., Neibolte, I. and Murnieks, R. (2015) Synthesis of Activated Carbon Based Heterogenous Acid Catalyst for Biodiesel Preparation. Ap-plied Catalysis B: Environmental, 176-177, 553-558.
https://doi.org/10.1016/j.apcatb.2015.04.043 |
[18] | Geng, L., Wang, Y., Yu, G. and Zhu, Y. (2011) Efficient Car-bon-Based Solid Acid Catalysts for the Esterification of Oleic Acid. Catalysis Communications, 13, 26-30. https://doi.org/10.1016/j.catcom.2011.06.014 |
[19] | Zhang, T., Wei, H., Gao, J., Chen, S., Jin, Y., Deng, C., Wu, S., Xiao, H. and Li, W. (2022) Synthesis of Sulfonated Hierarchical Carbons and Theirs Application on the Production of Furfural from Wheat Straw. Molecular Catalysis, 517, Article ID: 112034. https://doi.org/10.1016/j.mcat.2021.112034 |
[20] | Xiao, H., Guo, Y., Liang, X. and Qi, C. (2010) One-Step Synthe-sis of Novel Biacidic Carbon via Hydrothermal Carbonization. Journal of Solid State Chemistry, 183, 1721-1725. https://doi.org/10.1016/j.jssc.2010.05.020 |
[21] | Nata, I.F., Irawan, C., Mardina, P. and Lee, C.-K. (2015) Car-bon-Based Strong Solid Acid for Cornstarch Hydrolysis. Journal of Solid State Chemistry, 230, 163-168. https://doi.org/10.1016/j.jssc.2015.07.005 |
[22] | Pang, J., Wang, A., Zheng, M. and Zhang, T. (2010) Hydrolysis of Cellulose into Glucose over Carbons Sulfonated at Elevated Temperatures. Chemical Communications, 46, 6935-6937. https://doi.org/10.1039/c0cc02014a |
[23] | Chen, G., Wang, X., Jiang, Y., Mu, X. and Liu, H. (2019) Insights into Deactivation Mechanism of Sulfonated Carbonaceous Solid Acids Probed by Cellulose Hydrolysis. Catalysis Today, 319, 25-30.
https://doi.org/10.1016/j.cattod.2018.03.069 |
[24] | Fraile, J.M., García-Bordejé, E., Pires, E. and Roldán, L. (2014) New Insights into the Strength and Accessibility of Acid Sites of Sulfonated Hydrothermal Carbon. Carbon, 77, 1157-1167. https://doi.org/10.1016/j.carbon.2014.06.059 |
[25] | Fraile, J.M., García-Bordejé, E. and Roldán, L. (2012) Deactivation of Sulfonated Hydrothermal Carbons in the Presence of Alcohols: Evidences for Sulfonic Esters Formation. Journal of Catalysis, 289, 73-79.
https://doi.org/10.1016/j.jcat.2012.01.017 |
[26] | Fraile, J.M., García-Bordejé, E., Pires, E. and Roldán, L. (2015) Catalytic Performance and Deactivation of Sulfonated Hydrothermal Carbon in the Esterification of Fatty Acids: Com-parison with Sulfonic Solids of Different Nature. Journal of Catalysis, 324, 107-118. https://doi.org/10.1016/j.jcat.2014.12.032 |
[27] | Maciá-Agulló, J.A., Sevilla, M., Diez, M.A. and Fuertes, A.B. (2010) Synthesis of Carbon-Based Solid Acid Microspheres and Their Application to the Production of Biodiesel. ChemSusChem, 3, 1352-1354.
https://doi.org/10.1002/cssc.201000308 |
[28] | Scholz, D., Kr?cher, O. and Vogel, F. (2018) Deactivation and Re-generation of Sulfonated Carbon Catalysts in Hydrothermal Reaction Environments. ChemSusChem, 11, 2189-2201. https://doi.org/10.1002/cssc.201800678 |
[29] | Guo, H., Qi, X., Li, L. and Smith, R.L. (2012) Hydrolysis of Cellu-lose over Functionalized Glucose-Derived Carbon Catalyst in Ionic Liquid. Bioresource Technology, 116, 355-359. https://doi.org/10.1016/j.biortech.2012.03.098 |
[30] | Tran, T.T.V., Kaiprommarat, S., Kongparakul, S., Reubroy-charoen, P., Guan, G., Nguyen, M.H. and Samart, C. (2016) Green Biodiesel Production from Waste Cooking Oil Using an Environmentally Benign Acid Catalyst. Waste Management, 52, 367-374. https://doi.org/10.1016/j.wasman.2016.03.053 |
[31] | Kang, S., Ye, J., Zhang, Y. and Chang, J. (2013) Preparation of Biomass Hydrochar Derived Sulfonated Catalysts and Their Catalytic Effects for 5-Hydroxymethylfurfural Production. RSC Advances, 3, 7360-7366.
https://doi.org/10.1039/c3ra23314f |
[32] | Liu, M., Jia, S., Gong, Y., Song, C. and Guo, X. (2013) Effective Hy-drolysis of Cellulose into Glucose over Sulfonated Sugar-Derived Carbon in an Ionic Liquid. Industrial & Engineering Chemistry Research, 52, 8167-8173.
https://doi.org/10.1021/ie400571e |
[33] | Qi, X., Guo, H., Li, L. and Smith Jr, R.L. (2012) Acid-Catalyzed Dehydra-tion of Fructose into 5-Hydroxymethylfur- fural by Cellulose-Derived Amorphous Carbon. ChemSusChem, 5, 2215-2220.
https://doi.org/10.1002/cssc.201200363 |
[34] | Zhou, L., Dong, B., Tang, S., Ma, H., Chen, C., Yang, X. and Xu, J. (2013) Sulfonated Carbon Catalyzed Oxidation of Aldehydes to Carboxylic Acids by Hydrogen Peroxide. Journal of Energy Chemistry, 22, 659-664.
https://doi.org/10.1016/S2095-4956(13)60087-X |
[35] | Wu, B., Shen, S., Yuan, S., Pan, H., Wang, C., Jing, S., Li, J. and Zhao, Y. (2021) Co-Improvement of -COOH Group and -SO3H Group Densities in Carbon-Based Solid Acid by a Simple Strategy. Molecular Catalysis, 506, Article ID: 111539. https://doi.org/10.1016/j.mcat.2021.111539 |
[36] | Kitano, M., Arai, K., Kodama, A., Kousaka, T., Nakajima, K., Hayashi, S. and Hara, M. (2009) Preparation of a Sulfonated Porous Carbon Catalyst with High Specific Surface Area. Catalysis Letters, 131, 242-249.
https://doi.org/10.1007/s10562-009-0062-4 |
[37] | Mo, X., López, D.E., Suwannakarn, K., Liu, Y., Lotero, E., Goodwin, J.G. and Lu, C. (2008) Activation and Deactivation Characteristics of Sulfonated Carbon Catalysts. Journal of Catalysis, 254, 332-338.
https://doi.org/10.1016/j.jcat.2008.01.011 |
[38] | Tanemura, K., Suzuki, T. and Horaguchi, T. (2013) Synthesis of Sulfonated Polynaphthalene, Polyanthracene, and Polypyrene as Strong Solid Acids via Oxidative Coupling Polymeriza-tion. Journal of Applied Polymer Science, 127, 4524-4536. https://doi.org/10.1002/app.38045 |
[39] | Nakhate, A.V. and Yadav, G.D. (2016) Synthesis and Characterization of Sulfonated Carbon-Based Graphene Oxide Monolith by Sol-vothermal Carbonization for Esterification and Unsymmetrical Ether Formation. ACS Sustainable Chemistry & Engi-neering, 4, 1963-1973. https://doi.org/10.1021/acssuschemeng.5b01205 |
[40] | Luan, S., Li, W., Guo, Z., Li, W., Hou, X., Song, Y., Wang, R. and Wang, Q. (2022) Synthesis of Ordered Hierarchically Mesoporous/Microporous Car-bon Materials via Compressed CO2 for Fructose-to-HMF Transformation. Green Energy & Environment, 7, 1033-1044. https://doi.org/10.1016/j.gee.2021.01.005 |
[41] | Sun, C., Liao, Q., Xia, A., Chen, C., Fu, Q., Huang, Y., Zhu, X. and Sun, F. (2021) Hydrolysis of Disaccharides via Carbon-Based Solid Acids with Binding and Catalytic Domains: Glycosidic Bond Fracture Properties and Reaction Kinetics. Fuel, 300, Article ID: 120978. https://doi.org/10.1016/j.fuel.2021.120978 |
[42] | Aldana-Pérez, A., Lartundo-Rojas, L., Gómez, R. and Ni?o-Gómez, M.E. (2012) Sulfonic Groups Anchored on Mesoporous Carbon Starbons-300 and Its Use for the Esterification of Oleic Acid. Fuel, 100, 128-138.
https://doi.org/10.1016/j.fuel.2012.02.025 |
[43] | Bahr, J.L., Yang, J., Kosynkin, D.V., Bronikowski, M.J., Smalley, R.E. and Tour, J.M. (2001) Functionalization of Carbon Nanotubes by Electrochemical Reduction of Aryl Diazonium Salts:? A Bucky Paper Electrode. Journal of the American Chemical Society, 123, 6536-6542. https://doi.org/10.1021/ja010462s |
[44] | Hosseini, M.-S. and Masteri-Farahani, M. (2021) Phenyl Sulfonic Acid Functionalized Graphene-Based Materials: Synthetic Approaches and Applications in Organic Reactions. Tetrahedron, 86, Article ID: 132083.
https://doi.org/10.1016/j.tet.2021.132083 |
[45] | Ji, J., Zhang, G., Chen, H., Wang, S., Zhang, G., Zhang, F. and Fan, X. (2011) Sulfonated Graphene as Water-Tolerant Solid Acid Catalyst. Chemical Science, 2, 484-487. https://doi.org/10.1039/C0SC00484G |
[46] | Huang, L., Song, C., Liu, Y., Lin, H., Ye, W., Huang, H., Lu, R. and Zhang, S. (2021) Enhancement of Catalytic Esterification by Tuning Molecular Diffusion in Sulfonated Carbon. Mi-croporous and Mesoporous Materials, 318, Article ID: 111024. https://doi.org/10.1016/j.micromeso.2021.111024 |
[47] | Yang, H., Joh, H.-I., Choo, H., Choi, J.-W., Suh, D.J., Lee, U., Choi, J. and Ha, J.-M. (2021) Condensation of Furans for the Production of Diesel Precursors: A Study on the Ef-fects of Surface Acid Sites of Sulfonated Carbon Catalysts. Catalysis Today, 375, 155-163. https://doi.org/10.1016/j.cattod.2020.05.006 |
[48] | Bounoukta, C.E., Megías-Sayago, C., Ivanova, S., Penkova, A., Ammari, F., Centeno, M.A. and Odriozola, J.A. (2021) Effect of the Sulphonating Agent on the Catalytic Behavior of Activated Carbons in the Dehydration Reaction of Fructose in DMSO. Applied Catalysis A: General, 617, Article ID: 118108.
https://doi.org/10.1016/j.apcata.2021.118108 |
[49] | Goscianska, J. and Malaika, A. (2020) A Facile Post-Synthetic Modification of Ordered Mesoporous Carbon to Get Efficient Catalysts for the Formation of Acetins. Catalysis Today, 357, 84-93.
https://doi.org/10.1016/j.cattod.2019.02.049 |
[50] | Malaika, A., Mesjasz, D. and Koz?owski, M. (2023) Maximizing the Selectivity to Triacetin in Glycerol Acetylation through a Plastic Waste-Derived Carbon Catalyst Development and Selection of a Reaction Unit. Fuel, 333, Article ID: 126271. https://doi.org/10.1016/j.fuel.2022.126271 |