|
Material Sciences 2023
乙酸渗透汽化脱水膜的研究进展
|
Abstract:
乙酸是一种重要的化工原料,可以广泛地应用在医药、染料、农药、合成纤维等各个行业。我国是目前世界上最大的乙酸生产国,但在乙酸生产的过程中有副产物水生成,因此乙酸脱水是其生产过程中不可缺少的环节。相对于传统的精馏技术,膜渗透汽化脱水具有效率高、操作简单、能耗低等优势,在乙酸脱水中具有广阔的应用前景。本文总结了近年来用于乙酸脱水渗透汽化膜的研究进展,主要从膜材料及其分离性能方面对现有乙酸渗透汽化脱水膜进行了分析。最后,对乙酸脱水膜的发展前景做出了展望。
Acetic acid is an important chemical raw material, which can be widely used in medicine, dyes, pesticides, synthetic fiber and other industries. At present, China is the largest producer of acetic acid in the world, but there is by-product water formation in the process of acetic acid production, so acetic acid dehydration is an indispensable link in its production pro-cess. Compared with the traditional distillation technology, membrane pervaporation dehydration has the advantages of high efficiency, simple operation and low energy consumption, so it has a broad application prospect in acetic acid dehydration. This paper summarizes the research pro-gress of acetic acid dehydration pervaporation membranes in recent years, and mainly analyzes the existing acetic acid pervaporation membranes from the aspects of membrane materials and sepa-ration performance. Finally, the development prospect of acetic acid dehydration membrane is prospected.
[1] | Kuila, S.B. and Ray, S.K. (2001) Sorption and Permeation of Acetic Acid-Water Mixtures by Pervaporation Using Co-polymer Membrane. Polymer Engineering & Science, 53, 1073-1084. https://doi.org/10.1002/pen.23352 |
[2] | 王意, 李绍军. 稀醋酸脱水系统的模拟优化及其控制[J]. 现代化工, 2016, 27(7): 170-173. |
[3] | Shin, C.H., Kim, J.Y. and Kim, J.Y. (2009) A Solvent Extraction Approach to Recover Acid from Mixed Waste Acids Produced during Semicon-ductor Water Process. Journal of Hazardous Materials, 162, 1278-1284.
https://doi.org/10.1016/j.jhazmat.2008.06.029 |
[4] | 王晓燕, 阎雪茹, 刘新磊. 乙酸脱水膜研究进展[J]. 膜科学与技术, 2021, 41(6): 202-212. |
[5] | Jin, C.G., Yin, M.J., Wu, J.K., Zhang, W.H., Wang, N. and An, Q.F. (2022) De-velopment of High-Performance and Robust Membrane via “Hard-Crosslinking-Soft” Technique for Dehydration of Acetic Acid. Journal of Membrane Science, 643, Article ID: 120033. https://doi.org/10.1016/j.memsci.2021.120033 |
[6] | Shao, P. and Huang, R.Y.M. (2007) Polymeric Membrane Pervaporation. Journal of Membrane Science, 287, 162-179.
https://doi.org/10.1016/j.memsci.2006.10.043 |
[7] | Manito Pereira, A.M., Lopes, M.C., Timmer, J.M.K. and Keurentjes, J.T.F. (2005) Solvent Sorption Measurements in Polymeric Membranes with ATR-IR Spectroscopy. Journal of Membrane Science, 260, 174-180.
https://doi.org/10.1016/j.memsci.2005.03.041 |
[8] | Chaudhari, S., Kwon, Y.S., Moon, Y.S., Shon, M.Y., Park, Y., Song, H.R., Jang, B.R. and Nam, S.E. (2015) Water-selective Membrane from Crosslinking of Poly(Vinyl Alcohol) with Tartaric Acid and Pervaporation Separation Characteristics for a Water/Acetic Acid Mixture. Korean Chemical Society, 36, 2534-2541.
https://doi.org/10.1002/bkcs.10493 |
[9] | Banerjee, A. and Ray, S.K. (2018) PVA Modified Filled Copolymer Membranes for Pervaporative Dehydration of Acetic Acid-Systematic Optimization of Synthesis and Process Parameters with Response Surface Methodology. Journal of Membrane Science, 549, 84-100. https://doi.org/10.1016/j.memsci.2017.11.056 |
[10] | Pu, H.T. and Liu, Q.Z. (2004) Methanol Permeability and Pro-ton Conductivity of Polybenzimidazole and Sulfonated Polybenzimidazole. Polymer International, 53, 1512-1516. |
[11] | Lee, J.F. and Wang, Y.C. (1998) Dehydration of Acetic Acid/Water Mixture by Pervaporation through a Chemically Modified Poly(4-methyl-l-pentene) Membrane. Separation Science and Technology, 33, 187-200.
https://doi.org/10.1080/01496399808544763 |
[12] | Wang, Y.C., Li, C.L., Chang, P.F., Shu, C.F., Lee, K.R. and Lai, J.Y. (2002) Separation of Water-Acetic Acid Mixture by Pervaporation through Plasma-Treated Asymmetric Poly(4-methyl-1-pentene) Membrane and Dip-Coated with Polyacrylic Acid. Journal of Membrane Science, 28, 3-12. https://doi.org/10.1016/S0376-7388(01)00673-1 |
[13] | Polotskaya, G., Pulyalina, A., Lebedev, V., T?r?k, G., Rudakova, D. and Vinogradova, L. (2020) Novel View at Hybrid Membranes Containing Star Macromolecules Using Neutron Scattering and Pervaporation Dehydration of Acetic Acid. Materials & Design, 186, Article ID: 108352. https://doi.org/10.1016/j.matdes.2019.108352 |
[14] | Faykov, I.I., Rostovtseva, V.A., Tyan, N.S. and Pulyalina, A.Y. (2021) A Deep Eutectic Solvent as a Modifier of Polyphenylene Oxide Membranes for Acetic Acid Dehydration. Mem-branes and Membrane Technologies, 3, 124-130.
https://doi.org/10.1134/S2517751621020037 |
[15] | Chen, J.H., Qing, L.L., Zhu, A.M. and Zhang, Q.G. (2008) Dehydration of Acetic Acid by Pervaporation Using SPEK-C/PVA Blend Membrane. Journal of Membrane Science, 320, 416-422.
https://doi.org/10.1016/j.memsci.2008.04.034 |
[16] | Yeom, C.K. and Lee, K.H. (1996) Pervaporative Separation of Water-Acetic Acid Mixtures through Poly(Vinyl Alcohol) Membranes Crosslinked with Glutaraldehyde. Journal of Membrane Science, 109, 257-265.
https://doi.org/10.1016/0376-7388(95)00196-4 |
[17] | Lecaros, R.L.G., Mendoza, G.E.J., Hung, W.S., An, Q.F., Caparanga, A.R., Tsai, H.A., Hu, C.C., Lee, K.R. and Lai, J.Y. (2017) Tunable Interlayer Spacing of Composite Gra-phene Oxide-Framework Membranes for Acetic Acid Dehydration. Carbon, 123, 660-667. https://doi.org/10.1016/j.carbon.2017.08.019 |
[18] | Zhou, F.B. and William, K. (2006) Study of Thermal Annealing on Matrimidw Fiber Performance in Pervaporation of Acetic Acid and Water Mixtures. Polymer, 47, 280-288. https://doi.org/10.1016/j.polymer.2005.11.017 |
[19] | Rao, P.S., Krishnaiah, A., Smitha, B. and Sridhar, S. (2006) Separation of Acetic Acid/Water Mixtures by Pervaporation through Poly(Vinyl Alcohol)-Sodium Alginate Blend Mem-branes. Separation Science and Technology, 41, 979-999.
https://doi.org/10.1080/01496390600588895 |
[20] | Chen, J.H., Liu, Q.L., Zhu, A.M., Fang, J. and Zhang, Q.G. (2008) Dehydration of Acetic Acid Using Sulfonation Cardo Polyetherketone (SPEK-C) Membranes. Journal of Mem-brane Science, 308, 171-179.
https://doi.org/10.1016/j.memsci.2007.09.058 |
[21] | I??klan, N. and ?anl?, O. (2005) Separation Characteristics of Acetic Acid-Water Mixtures by Pervaporation Using Poly(vinyl alcohol) Membranes Modified with Malic Acid. Chem-ical Engineering and Processing: Process Intensification, 44, 1019-1027. https://doi.org/10.1016/j.cep.2005.01.005 |
[22] | Alghezawi, N., ?anl?, O., Aras, L. and Asman, G. (2005) Separation of Acetic Acid-Water Mixtures through Acrylonitrile Grafted Poly(vinyl alcohol) Membranes by Pervaporation. Chemi-cal Engineering and Processing, 44, 51-58.
https://doi.org/10.1016/j.cep.2004.03.007 |
[23] | Chaudhari, S., Kwon, Y., Moon, M., Shon, M., Nam, S. and Park, Y. (2016) In Situ Generation of Silver Nanoparticles in Poly(Vinyl Alcohol)/Poly(Acrylic Acid) Polymer Membranes in the Absence of Reducing Agent and Their Effect on Pervaporation of a Water/Acetic Acid Mixture. Bulletin of the Kore-an Chemical Society, 37, 1985-1991.
https://doi.org/10.1002/bkcs.11008 |
[24] | Okuno, H. and Nishirnoto, H. (1993) Behaviour of Permeation and Sepa-ration for Aqueous Organic Acid Solutions Through Poly(Viny1 Chloride) and Poly[(Vinyl Chloride)-co-(Vinyl Ace-tate)] Membranes. Makromolekulare Chemie, 194, 927-939. https://doi.org/10.1002/macp.1993.021940316 |
[25] | Wang, Y., Shung, C.T. and Gruender, M. (2012) Sulfonated Polybenzimidazole Membranes for Pervaporation Dehydration of Acetic Acid. Journal of Membrane Science, 415-416, 486-495.
https://doi.org/10.1016/j.memsci.2012.05.035 |
[26] | Li, Y., Zhou, H., Zhu, G., Liu, J. and Yang, W. (2007) Hydro-thermal Stability of LTA Zeolite Membranes in Pervaporation. Journal of Membrane Science, 297, 10-15. https://doi.org/10.1016/j.memsci.2007.03.041 |
[27] | Huang, S., Chang, P., Tsai, M. and Chang, H. (2007) Properties and Pervaporation Performances of Crosslinked HTPB-Based Polyurethane Membranes. Separation and Purification Technology, 56, 63-70.
https://doi.org/10.1016/j.seppur.2006.12.021 |
[28] | Pera-Titus, M., Bausach, M., Llorens, J. and Cunill, F. (2008) Preparation of Inner-Side Tubular Zeolite NaA Membranes in a Continuous Flow System. Separation and Purification Technology, 59, 141-150.
https://doi.org/10.1016/j.seppur.2007.05.038 |
[29] | Van Hoof, V., Dotremont, C. and Buekenhoudt, A. (2006) Per-formance of Mitsui NaA Type Zeolite Membranes for the Dehydration of Organic Solvents in Comparison with Com-mercial Polymeric Pervaporation Membranes. Separation and Purification Technology, 48, 304-309. https://doi.org/10.1016/j.seppur.2005.06.019 |
[30] | Sato, K., Sugimoto, K. and Nakane, T. (2008) Synthesis of In-dustrial Scale NaY Zeolite Membranes and Ethanol Permeating Performance in Pervaporation and Vapor Permeation up to 130?C and 570 kPa. Journal of Membrane Science, 310, 161-173. https://doi.org/10.1016/j.memsci.2007.10.047 |
[31] | Li, G., Su, X.H. and Lin, R.S. (2007) Preparation of Highly Water-Selective Mordenite Membranes via Post-Synthetic Treatment with Oxalic Acid. Materials Letters, 61, 4576-4578. https://doi.org/10.1016/j.matlet.2007.02.054 |
[32] | Navajas, A., Mallada, R., Téllez, C., Coronas, J., Menéndez, M. and Santamaría, J. (2006) The Use of Post-Synthetic Treatments to Improve the Pervaporation Performance of Mordenite Membranes. Journal of Membrane Science, 270, 32-41. https://doi.org/10.1016/j.memsci.2005.06.038 |
[33] | McLeary, E., Jansen, J. and Kapteijn, F. (2006) Zeolite Based Films, Membranes and Membrane Reactors: Progress and Prospects. Microporous and Mesoporous Materials, 90, 198-220. https://doi.org/10.1016/j.micromeso.2005.10.050 |
[34] | Li, G., Kikuchi, E. and Matsukata, M. (2003) A Study on the Pervaporation of Water-Acetic Acid Mixtures through ZSM-5 Zeolite Membranes. Journal of Membrane Science, 218, 185-194.
https://doi.org/10.1016/S0376-7388(03)00172-8 |
[35] | Raza, W., Wang, J., Yang, J. and Tsuru, T. (2021) Progress in Pervaporation Membranes for Dehydration of Acetic Acid. Separation and Purification Technology, 262, 118-338. https://doi.org/10.1016/j.seppur.2021.118338 |
[36] | Si, D., Zhu, X., Sun, M., Xue, X.M., Li, Y., Wu, T., Gui, T., Kumakiri, I., Chen, X. and Kita, H. (2021) Formation Process and Pervaporation of High Aluminum ZSM-5 Zeolite Membrane with Fluoride-Containing and Organic Template-Free Gel. Separation and Purification Technology, 257, 117-963. https://doi.org/10.1016/j.seppur.2020.117963 |
[37] | Cui, Y., Kita, H. and Okamoto, K.I. (2004) Zeolite T Membranes: Preparation, Characterization, Pervaporation of Water/Organic Liquid Mixtures and Acid Stability. Journal of Membrane Science, 236, 17-27.
https://doi.org/10.1016/j.memsci.2003.12.018 |
[38] | Qiu, H., Jiang, J., Peng, L., Liu, H. and Gu, X.H. (2019) Cho-line Chloride Templated CHA Zeolite Membranes for Solvents Dehydration with Improved Acid Stability. Microporous and Mesoporous Materials, 284, 170-176.
https://doi.org/10.1016/j.micromeso.2019.04.011 |
[39] | Yamanaka, N., Itakura, M., Kiyozumi, Y., Ide, Y., Sadakane, M. and Sano, T. (2012) Acid Stability Evaluation of CHA-Type Zeolite and Their Membrane Application for Dehydra-tion of Acetic Aqueous Solution. Microporous and Mesoporous Materials, 158, 141-147. https://doi.org/10.1016/j.micromeso.2012.03.030 |
[40] | Xia, S., Peng, Y., Lu, H. and Wang, Z. (2016) The Influence of Nanoseeds on the Pervaporation Performance of MFI-Type Zeolite Membranes on Hollow Fibers. Microporous and Mesoporous Materials, 222, 128-137.
https://doi.org/10.1016/j.micromeso.2015.10.010 |
[41] | Elyassi, B., Jeon, M.Y. and Tsapatsis, M. (2016) Etha-nol/Water Mixture Pervaporation Performance of b-Oriented Silicalite-1 Membranes Made by Gel-Free Secondary Growth. AIChE Journal, 62, 556-563.
https://doi.org/10.1002/aic.15124 |
[42] | Zhao, C., Liu, X. and Zhang, B. (2016) Submicrometer-Thick b-Oriented Fe-Silicalite-1 Membranes: Microwave-Assisted Fabrication and Pervaporation Performances. RSC Advances, 6, 108265-108269. https://doi.org/10.1039/C6RA23327A |
[43] | Ikegami, T., Negishi, H., Nakayama, S., Kobayashi, G. and Sakaki, K. (2014) Pervaporative Concentration of Biobutanol from ABE Fermentation Broths by Clostridium Sac-charoperbutylacetonicum Using Silicone Rubber-Coated Silicalite-1 Membranes. Separation and Purification Technology, 132, 206-212.
https://doi.org/10.1016/j.seppur.2014.05.030 |
[44] | Zhu, M.H., Kumakiri, I., Tanaka, K. and Kita, H. (2013) Dehy-dration of Acetic Acid and Esterification Product by Acid-Stable ZSM-5 Membrane, Microporous and Mesoporous Ma-terials, 181, 47-53.
https://doi.org/10.1016/j.micromeso.2012.12.044 |
[45] | Li, Y., Meihua, Z., Na, H., Zhang, F., Wu, T., Chen, X.H. and Kita, H. (2018) Scale-Up of High Performance Mordenite Membranes for Dehydration of Water-Acetic Acid Mix-tures. Journal of Membrane Science, 564, 174-183.
https://doi.org/10.1016/j.memsci.2018.07.024 |
[46] | Masuda, T., Otani, S.H., Tsuji, T., Kitamura, M. and Mukai, S.R. (2003) Preparation of Hydrophilic and Acid-Proof Silicite-1 Zeolite Membranes and Its Application to Concentrated Acetic Acid by Pervaporation. Separation and Purification Technology, 32, 181-189. https://doi.org/10.1016/S1383-5866(03)00032-7 |
[47] | Kitao, S. and Asaeda, M. (1990) Separation of Organic Ac-id/Water Mixtures by Thin Porous Silica Membrane. Journal of Chemical Engineering of Japan, 23, 367-370. https://doi.org/10.1252/jcej.23.367 |
[48] | Kusumocahyo, S.P. and Sudoh, M. (2021) Pervaportion of Acetic Ac-id-Water Mixture Using Silica Membrane Prepared by Sol-Gel Method. Journal of Membrane Science, 620, Article ID: 118860. |
[49] | Bowen, T.C., Noble, R.D. and Falconer, J.L. (2004) Fundamentals and Applications of Pervaporation through Zeolite Membranes. Journal of Membrane Science, 245, 1-33. https://doi.org/10.1016/j.memsci.2004.06.059 |