全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Classification of B and Y Ions in Peptide MS/MS Spectra Based on Machine Learning

DOI: 10.4236/jcc.2023.113008, PP. 99-109

Keywords: Ion-Type Classification, Machine Learning, LightGBM, Proteomics, Tandem Mass Spectrometry

Full-Text   Cite this paper   Add to My Lib

Abstract:

In proteomics, b and y ions serve as the backbone ions for peptide sequencing in tandem mass spectrometry. Leveraging the existing ion recognition and separation methods, this article proposes a novel ion classification approach that combines machine learning with graph theory. By incorporating graph features, the method achieves higher accuracy and efficiency in ion type recognition, with the graph features playing a critical role in the classification process. Specifically, the method achieves a recall rate of nearly 90% for b and y ions, demonstrating its effectiveness in pre-processing de novo sequencing and improving its accuracy. The proposed method represents advancement in ion classification and has the potential to improve the accuracy and efficiency of de novo sequencing.

References

[1]  Yan, B., Pan, C., Olman, V., et al. (2005) A Graph-Theoretic Approach for the Separation of b and y Ions in Tandem Mass Spectra. Bioinformatics, 21, 563-574.
https://doi.org/10.1093/bioinformatics/bti044
[2]  Cleveland, J.P. and Rose, J.R. (2013) Identification of b-/y-Ions in MS/MS Spectra Using a Two Stage Neural Network. Proteome Science, 11, S4.
https://doi.org/10.1186/1477-5956-11-S1-S4
[3]  Alicia, L., et al. (2013) Neutron-Encoded Signatures Enable Product Ion Annotation from Tandem Mass Spectra. Molecular & Cellular Proteomics, 12, 3812-3823.
https://doi.org/10.1074/mcp.M113.028951
[4]  Overmyer, K.A., Tyanova, S., Hebert, A.S., et al. (2018) Multiplexed Proteome Analysis with Neutron-Encoded Stable Isotope Labeling in Cells and Mice. Nature Protocols, 13, 293-306.
https://doi.org/10.1038/nprot.2017.121
[5]  Rose, C.M., Merrill, A.E., Bailey, D.J., et al. (2013) Neutron Encoded Labeling for Peptide Identification. Analytical Chemistry, 85, 5129-5137.
https://doi.org/10.1021/ac400476w
[6]  Potts, G.K., Voigt, E.A., Bailey, D.J., et al. (2016) Neucode Labels for Multiplexed, Absolute Protein Quantification. Analytical Chemistry, 88, 3295-3303.
https://doi.org/10.1021/acs.analchem.5b04773
[7]  Tran, N.H., Zhang, X., et al. (2018) De Novo Peptide Sequencing by Deep Learning. PNAS, 114, 8247-8252.
[8]  Frank, A. and Pevzner, P. (2005) PepNovo: De Novo Peptide Sequencing via Probabilistic Network Modeling. Analytical Chemistry, 77, 964-973.
https://doi.org/10.1021/ac048788h
[9]  Renard, B.Y., et al. (2010) When Less Can Yield More—Computational Preprocessing of MS/MS Spectra for Peptide Identification. Proteomics, 9, 4978-4984.
[10]  Mo, L., Dutta, D., Wan, Y., et al. (2007) MSNovo: A Dynamic Programming Algorithm for de Novo Peptide Sequencing via Tandem Mass Spectrometry. Analytical Chemistry, 79, 4870-4878.
https://doi.org/10.1021/ac070039n
[11]  Dimaggio, P.A. and Floudas, C.A. (2007) De Novo Peptide Identification via Tandem Mass Spectrometry and Integer Linear Optimization. Analytical Chemistry, 79, 1433-1446.
https://doi.org/10.1021/ac0618425
[12]  Chi, H., Sun, R.X., Yang, B., et al. (2010) PNovo: De Novo Peptide Sequencing and Identification Using HCD Spectra. Journal of Proteome Research, 9, 2713-2724.
https://doi.org/10.1021/pr100182k
[13]  Wessels, H., Bloemberg, T.G., Dael, M., et al. (2012) A Comprehensive Full Factorial LC-MS/MS Proteomics Benchmark Data Set. Proteomics, 12, 2276-2281.
https://doi.org/10.1002/pmic.201100284
[14]  Zhou, X.X., Zen, W.F., Chi, H., et al. (2017) pDeep: Predicting MS/MS Spectra of Peptides with Deep Learning. Analytical Chemistry, 89, 12690-12697.
https://doi.org/10.1021/acs.analchem.7b02566
[15]  Yan, D., Chen, H., Cheng, J., et al. (2018) Scalable De Novo Genome Assembly Using Pregel. 2018 IEEE 34th International Conference on Data Engineering (ICDE), Paris, 16-19 April 2018, 1216-1219.
[16]  Ma, B., Zhang, K. and Liang, C. (2005) An Effective Algorithm for Peptide de Novo Sequencing from MS/MS Spectra. Journal of Computer and System Sciences, 70, 418-430.
https://doi.org/10.1016/j.jcss.2004.12.001
[17]  Yang, H., et al. (2019) Precision De Novo Peptide Sequencing Using Mirror Proteases of Ac-LysargiNase and Trypsin for Large-Scale Proteomics. Molecular & Cellular Proteomics: MCP, 18, 773-785.
[18]  Nguyen, M.N. and Vien, N.A. (2019) Scalable and Interpretable One-Class SVMs with Deep Learning and Random Fourier Features: Recognizing Outstanding. Ph.D. Research.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133