全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Linear and Nonlinear Stokes Waves Theory: Numerical Hydrodynamic and Energy Studies

DOI: 10.4236/ojfd.2023.131005, PP. 61-79

Keywords: Waves Tank, Energy, Waves, Gravity Waves, Navier-Stokes, Numerical, Nonlinear Stokes Theory

Full-Text   Cite this paper   Add to My Lib

Abstract:

The increase of wave energy in electricity production is an objective shared by many countries to meet growing demand and global warming. To analyze devices capable of converting the energy of sea waves into electrical energy, it is important to master the various theories of gravity waves and generation. We will in our work consider a numerical waves tank for an amplitude A=0.5, a wavelength

λ=0.25 , an average height He=10 and a Froude number fixed at 1 × 105. Numerical wave channel analysis is used to reproduce the natural phenomenon of wave propagation in an experimental model. Wave makers are usually used to generate waves in the channel. In theory, the influence of an incident wave can be considered, as in the case of our study. In this study, the evolution of the hydrodynamic parameters and the energy transported in one wavelength can be determined by calculation. A change of variable will be done in this work to facilitate the writing of the boundary conditions at the free surface and at the bottom. The nonlinear Stokes theory will be studied in this case in order to provide hydrodynamic solutions through the Navier-Stokes equations to finally deduce the energetic results. To do this, the finite difference method will be used for the hydrodynamic results such as the velocity potential and the free surface elevation and the trapezium method of Newton for the energetic results. Thus, we will determine the energetic potential according to the decrease in the slope of the tank. To do this, we will take as values of beta representing the inverse of the slope of the tank, β=100, β=105, β=110 and β=105.

References

[1]  Bougis, J. (1993) Les houles periodiques simples. Institut des Sciences de l’Ingenieur de Toulon et du Var, Universite’ de Toulon et Du Var.
[2]  Nayfey, A. (1973) Perturbation Methods. John Wiley and Sons, New York.
[3]  Christensen, E.D. and Deigaard, R. (2001) Large Eddy Simulation of Breaking Waves. Coastal Engineering, 42, 53-86.
https://doi.org/10.1016/S0378-3839(00)00049-1
[4]  Klepsvik, J. (1995) Nonlinear Wave Loads on Offshore Structure. Master of Science in Ocean Engineering, Massachusetts Institute of Technology (MIT), Cambridge, 26-36.
[5]  Molin, B., Jamois, E., Lee, C.H. and Newman, J.N. (2005) Nonlinear Wave Interaction with a Square Cylinder. In: 20th International Workshop on Water Waves and Floating Bodies, Longyearbyen, 29 May-1 June 2005.
[6]  Rahman, M., Bora, S.N. and Satish, M.G. (1999) A Note on Second-Order Wave Forces on a Circular Cylinder in Finite Water Depth. Applied Mathematics Letters, 12, 63-70.
https://doi.org/10.1016/S0893-9659(98)00128-1
[7]  Bhatta, D.D. (2005) Nonlinear Free Surface Condition Due to Second Order Diffraction by a Pair of Cylinders. Journal of Applied Mathematics and Computing, 18, 171-182.
[8]  Yang, Z., Liu, S., Bingham, H.B. and Li, J. (2013) A Second-Order Theory for Coupling 2D Numerical and Physical Wave Tanks: Derivation, Evaluation and Experimental Validation. Coastal Engineering, 71, 37-51.
https://doi.org/10.1016/j.coastaleng.2012.07.003
[9]  Le Touzé, D., Bonnefoy, F. and Ferrant, P. (2002) Second-Order Spectral Simulation of Directional Wave Generation and Propagation in a 3D Tank. In: 17th International Workshop on Water Waves and Floating Bodies, Cambridge, UK, 14-17 April 2002.
[10]  Mangoub, G. (1992) étude numérique de l’interaction tourbillon paroi par une Méthode particules maillage. Thèse de Doctorat, Université Paris VI, Paris.
[11]  Loukili, M., Mordane, S. and Chagdali, M. (2016) Formulation Semi Analytique de la propagation non linéaire de la Houle. In: XIV èmes Journées Nationales Génie Cotier—Génie Civil, Toulon, 29 Juin-1 Juillet 2016, 57-64.
[12]  Susbielles, G., Bratu, C. and Cavanie, A. (1981) Vagues et ouvrages Pétroliers en mer. Publications de l’institut francais du pétrole, Paris, 65-70.
[13]  Belibassakis, K.A. and Athanassoulis, G.A. (2002) Extension of Second Order Stokes Theory to Variable Bathymetry. Journal of Fluid Mechanics, 464, 35-80.
https://doi.org/10.1017/S0022112002008753
[14]  Babarit, A. and Mouslim, H. (2013) Récuperation de l’énergie des vagues. Techniques de l’Ingenieur, Paris.
[15]  Michard, B., Cosquer, E. and Dufour, G.G. (2014) Projet EMACOP: évaluation du potentiel houlomoteur de 22 sites francais en Manche et Atlantique. In: Journées Nationales Génie Cotier—Génie Civil, Dunkerque, 2-4 Juillet 2014, 751-758.
[16]  Cheung, J.T. and Childress III, E.F. (2007) Ocean Wave Energy Harvesting Devices. Rapp. Tech. Teledyne Scientific et Imaging LLC, Oaks, CA.
[17]  Erikson, M. (2007) Modelling and Experimental Verification of Direct Drive Wave Energy Conversion: Buoy-Generator Dynamics. OCLC: 938423643. Thèse de Doctorat, Acta Universitatis Upsaliensis, Uppsala, 1-61.
[18]  Du, Q.J. and Leung, D.Y.C. (2011) 2D Numerical Simulation of Ocean Waves. In: World Renewable Energy Congress, Sweden, 8-13 May 2011, 2183-2189.
[19]  Wei, G., Kirby, J.T. and Sinha, A. (1999) Generation of Waves in Boussinesq Models Using a Source Function Method. Coastal Engineering, 36, 271-299.
https://doi.org/10.1016/S0378-3839(99)00009-5
[20]  Chawla, A. and Kirby, J.T. (2000) A Source Function Method for Generation of Waves on Currents in Boussinesq Models. Applied Ocean Research, 22, 75-83.
https://doi.org/10.1016/S0141-1187(00)00005-5
[21]  Dong, C.M. and Huang, C.J. (2004) Generation and Propagation of Water Waves in a Two-Dimensional Numerical Viscous Wave Flume. Journal of Waterway, Port, Coastal and Ocean Engineering, 130, 143-153.
https://doi.org/10.1061/(ASCE)0733-950X(2004)130:3(143)
[22]  Lu, Y.J. (2007) Numerical Simulation of Two-Dimensional Overtopping against Seawalls Armored with Artificial Units in Regular Waves. Journal of Hydrodynamics, 19, 322-329.
https://doi.org/10.1016/S1001-6058(07)60065-1
[23]  Da Silva, E.G. (2007) Méthodes et Analyse Numériques. Engineering School. Institut Polytechnique, Grenoble.
[24]  Beuneu, J. (1999) Algorithmes pour le calcul scientifique. Cours de l’Ecole Universitaire d’Ingénieurs, Lille.
[25]  Bejan, A. (2013) Convection Heat Transfer. John Wiley & Sons, New York.
[26]  Demailly, J.P. (1996) Analyse numérique et équations différentielles. Presses Universitaires, Grenoble.
[27]  Elchahal, G., Younes, R. and Lafon, P. (2008) The Effects of Reflection Coefficient of the Harbour Sidewall on the Performance of Floating Breakwaters. Ocean Engineering, 35, 1102-1112.
[28]  Drew, B., Plummer, A.R. and Sahinkaya, M.N. (2009) A Review of Wave Energy Converter Technology. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 223, 887-902.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133