全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Fabrication and Characterization of Lanthanide-TiO2 Nanotube Composites

DOI: 10.4236/ojpc.2023.132002, PP. 13-28

Keywords: TiO2 Nanotube, Lanthanide Doped, Hydrothermal, XRD, TEM, Raman Spectroscopy

Full-Text   Cite this paper   Add to My Lib

Abstract:

Titanium dioxide (TiO2) doped with neodymium (Nd) and/or Gadolinium (Gd) rare-earth elements were fabricated into nanotubes via the hydrothermal method in a KOH solution and in-situ doping. Titanium dioxide nanotubes (TNTs) and in-situ Nd-doped and/or Gd-doped TNTs were characterized with transmission and scanning electron microscopy, energy-dispersive X-ray analysis, X-ray diffraction, Raman spectroscopy, and Fourier-transform infrared spectroscopy. Morphologies indicated a network of aggregated nanotubes. The phase and composition analyses revealed that the lanthanide TNTs had anatase phases with Nd and/or Gd nanoparticles in the TNT lattice. The nanoparticles were uniformly deposited on the surface because of hydroxyl groups on the TNT surfaces, resulting in a very high loading density. The outer diameter and the length of the TNTs increased with doping. The mechanisms for the formation of multiwall TNTs are discussed.

References

[1]  Madian, M., Eychmüller, A. and Giebeler, L. (2018) Current Advances in TiO2-Based Nanostructure Electrodes for High Performance Lithium Ion Batteries. Batteries, 4, Article No. 7.
https://doi.org/10.3390/batteries4010007
[2]  Beydoun, D., Amal, R., Low, G. and McEvoy, S. (1999) Role of Nanoparticles in Photocatalysis. Journal of Nanoparticle Research, 1, 439-458.
https://doi.org/10.1023/A:1010044830871
[3]  Clarizia, L., Russo, D., Di Somma, I., et al. (2018) Multifunctional Photocatalytic Materials for Energy. Woodhead Publishing, Sawston.
[4]  Wang, W., Li, G., Xia, D., et al. (2017) Photocatalytic Nanomaterials for Solar-Driven Bacterial Inactivation: Recent Progress and Challenges. Environmental Science: Nano, 4, 782-799.
https://doi.org/10.1039/C7EN00063D
[5]  Wang, X., Li, X., Liu, D., et al. (2012) Highly Luminescent Carbon Nanodots by Microwave-Assisted Pyrolysis. Chemical Communications, 48, 7955-7957.
https://doi.org/10.1039/c2cc33869f
[6]  Mahmood, A., Guo, W., Tabassum, H. and Zou, R. (2016) Metal-Organic Framework-Based Nanomaterials for Electrocatalysis. Advanced Energy Materials, 6, Article ID: 1600423.
https://doi.org/10.1002/aenm.201600423
[7]  Byranvand, M.M., Kharat, A.N. and Bazargan, M.H. (2012) Titania Nanostructures for Dye-Sensitized Solar Cells. Nano-Micro Letters, 4, 253-266.
https://doi.org/10.1007/BF03353723
[8]  Salari, M., Aboutalebi, S.H., Aghassi, A., et al. (2015) Disorder Engineering of Undoped TiO2 Nanotube Arrays for Highly Efficient Solar-Driven Oxygen Evolution. Physical Chemistry Chemical Physics, 17, 5642-5649.
https://doi.org/10.1039/C4CP03177F
[9]  Lee, Y.-L., Chi, C.-F. and Liau, S.-Y. (2009) CdS/CdSe Co-Sensitized TiO2 Photoelectrode for Efficient Hydrogen Generation in a Photoelectrochemical Cell. Chemistry of Materials, 22, 922-927.
https://doi.org/10.1021/cm901762h
[10]  Guayaquil-Sosa, J.F., Calzada, A., Serrano, B., Escobedo, S. and de Lasa, H. (2017) Hydrogen Production via Water Dissociation Using Pt-TiO2 Photocatalysts: An Oxidation-Reduction Network. Catalysts, 7, 324-345.
https://doi.org/10.3390/catal7110324
[11]  Naldoni, A., Altomare, M., Zoppellaro, G., et al. (2018) Photocatalysis with Reduced TiO2: From Black TiO2 to Cocatalyst-Free Hydrogen Production. ACS Catalysis, 9, 345-364.
https://doi.org/10.1021/acscatal.8b04068
[12]  Song, Y.-Y., Schmidt-Stein, F., Bauer, S. and Schmuki, P. (2009) Amphiphilic TiO2 Nanotube Arrays: An Actively Controllable Drug Delivery System. Journal of the American Chemical Society, 131, 4230-4232.
https://doi.org/10.1021/ja810130h
[13]  Wang, T., Jiang, H., Wan, L., et al. (2015) Potential Application of Functional Porous TiO2 Nanoparticles in Light-Controlled Drug Release and Targeted Drug Delivery. Acta Biomaterialia, 13, 354-363.
https://doi.org/10.1016/j.actbio.2014.11.010
[14]  Enachi, M., Guix, M., Braniste, T., et al. (2015) Photocatalytic Properties of TiO2 Nanotubes Doped with Ag, Au and Pt or Covered by Ag, Au and Pt Nanodots. Surface Engineering and Applied Electrochemistry, 51, 3-8.
https://doi.org/10.3103/S1068375515010044
[15]  Perera, S.D., Mariano, R.G., Vu, K., et al. (2012) Hydrothermal Synthesis of Graphene-TiO2 Nanotube Composites with Enhanced Photocatalytic Activity. ACS Catalysis, 2, 949-956.
https://doi.org/10.1021/cs200621c
[16]  Lei, B., Xue, J.J., Jin, D.P., et al. (2008) Fabrication, Annealing, and Electrocatalytic Properties of Platinum Nanoparticles Supported on Self-Organized TiO2 Nanotubes. Rare Metals, 27, 445-450.
https://doi.org/10.1016/S1001-0521(08)60160-6
[17]  Zhang, Q., Wei, Y., Wang, Y., et al. (2017) Fabrication and Electrocatalytic Activity of TiO2 Nanotubes Based Electrode with High Oxygen Evolution Potential. Journal of Nanoscience and Nanotechnology, 17, 1950-1956.
https://doi.org/10.1166/jnn.2017.12935
[18]  Liu, N., Chen, X., Zhang, J. and Schwank, J.W. (2014) A Review on TiO2-Based Nanotubes Synthesized via Hydrothermal Method: Formation Mechanism, Structure Modification, and Photocatalytic Applications. Catalysis Today, 225, 34-51.
https://doi.org/10.1016/j.cattod.2013.10.090
[19]  Reszczyńska, J., Grzyb, T., Sobczak, J.W., et al. (2014) Lanthanide Co-Doped TiO2: The Effect of Metal Type and Amount on Surface Properties and Photocatalytic Activity. Applied Surface Science, 307, 333-345.
https://doi.org/10.1016/j.apsusc.2014.03.199
[20]  Meksi, M., Turki, A., Kochkar, H., et al. (2016) The Role of Lanthanum in the Enhancement of Photocatalytic Properties of TiO2 Nanomaterials Obtained by Calcination of Hydrogenotitanate Nanotubes. Applied Catalysis B: Environmental, 181, 651-660.
https://doi.org/10.1016/j.apcatb.2015.08.037
[21]  Mazierski, P., Lisowski, W., Grzyb, T., et al. (2017) Enhanced Photocatalytic Properties of Lanthanide-TiO2 Nanotubes: An Experimental and Theoretical Study. Applied Catalysis B: Environmental, 205, 376-385.
https://doi.org/10.1016/j.apcatb.2016.12.044
[22]  Parnicka, P., Mazierski, P., Lisowski, W., et al. (2018) A New Simple Approach to Prepare Rare-Earth Metals-Modified TiO2 Nanotube Arrays Photoactive under Visible Light: Surface Properties and Mechanism Investigation. Results in Physics, 12, 412-423.
https://doi.org/10.1016/j.rinp.2018.11.073
[23]  Li, H., Sheng, Y., Zhang, H., et al. (2011) Synthesis and Luminescent Properties of TiO2:Eu3+ Nanotubes. Powder Technology, 212, 372-377.
https://doi.org/10.1016/j.powtec.2011.06.019
[24]  Hewer, T.L.R., Souza, E.C.C., Martins, T.S., Muccillo, E.N.S. and Freire, R.S. (2011) Influence of Neodymium Ions on Photocatalytic Activity of TiO2 Synthesized by Sol-Gel and Precipitation Methods. Journal of Molecular Catalysis A: Chemical, 336, 58-63.
https://doi.org/10.1016/j.molcata.2010.12.010
[25]  Nassoko, D., Li, Y.-F., Li, J.-L., Li, X. and Yu, Y. (2012) Neodymium-Doped TiO2 with Anatase and Brookite Two Phases: Mechanism for Photocatalytic Activity Enhancement under Visible Light and the Role of Electron. International Journal of Photoenergy, 2012, Article ID: 716087.
https://doi.org/10.1155/2012/716087
[26]  Li, L., Zhou, Z., Lei, J., He, J., Liu, P. and Pan, F. (2012) Nd2O3-Decorated TiO2 Nanotube Arrays with High Photoelectrocatalytic Activity. Materials Letters, 79, 252-255.
https://doi.org/10.1016/j.matlet.2012.04.017
[27]  Nie, J., Mo, Y., Zheng, B., Yuan, H. and Xiao, D. (2013) Electrochemical Fabrication of Lanthanum-Doped TiO2 Nanotube Array Electrode and Investigation of Its Photoelectrochemical Capability. Electrochimica Acta, 90, 589-596.
https://doi.org/10.1016/j.electacta.2012.12.049
[28]  Zheng, Y. and Wang, W. (2014) Electrospun Nanofibers of Er3+-Doped TiO2 with Photocatalytic Activity beyond the Absorption Edge. Journal of Solid State Chemistry, 210, 206-212.
https://doi.org/10.1016/j.jssc.2013.11.029
[29]  Chai, Y., Lin, L., Zhang, K., Zhao, B. and He, D. (2014) Efficient Visible-Light Photocatalysts from Gd-La Codoped TiO2 Nanotubes. Ceramics International, 40, 2691-2696.
https://doi.org/10.1016/j.ceramint.2013.10.054
[30]  Wang, X., Jia, H., Wang, Y., Li, Y. and Bao, Z. (2016) The Photocatalytic Performance Research of La2O3 Modified TiO2 Nanotube Arrays. Journal of Materials Science: Materials in Electronics, 27, 7073-7078.
https://doi.org/10.1007/s10854-016-4665-4
[31]  Tuyen, L.T.T., Quang, D.A., Toan, T.T.T., et al. (2018) Synthesis of CeO2/TiO2 Nanotubes and Heterogeneous Photocatalytic Degradation of Methylene Blue. Journal of Environmental Chemical Engineering, 6, 5999-6011.
https://doi.org/10.1016/j.jece.2018.09.022
[32]  Emran, K.M., Ali, S.M. and Alanazi, H.E. (2020) Novel Hydrazine Sensors Based on Pd Electrodeposited on Highly Dispersed Lanthanide-Doped TiO2 Nanotubes. Journal of Electroanalytical Chemistry, 856, Article ID: 113661.
https://doi.org/10.1016/j.jelechem.2019.113661
[33]  Amro, A.N., Emran, K.M. and Alanazi, H.E. (2020) Voltammetric Determination of Itopride Using Carbon Paste Electrode Modified with Gd Doped TiO2 Nanotubes. Journal of Chemistry, 44, 1122-1133.
https://doi.org/10.3906/kim-2003-56
[34]  Emran, K.M. (2020) Catalytic Activity of Strontium Modified TiO2 Nanotubes for Hydrogen Evolution Reaction. International Journal of Electrochemical Science, 15, 4218-4231.
https://doi.org/10.20964/2020.05.02
[35]  Harsha, N., Ranya, K.R., Babitha, K.B., et al. (2011) Effect of Silver and Palladium on Dye-Removal Characteristics of Anatase-Titania Nanotubes. Journal of Nanoscience and Nanotechnology, 11, 1175-1187.
https://doi.org/10.1166/jnn.2011.3048
[36]  Zhang, S., Li, W., Jin, Z., et al. (2004) Study on ESR and Inter-Related Properties of Vacuum-Dehydrated Nanotubed Titanic Acid. Journal of Solid State Chemistry, 177, 1365-1371.
https://doi.org/10.1016/j.jssc.2003.11.027
[37]  Ohno, T., Sarukawa, K., Tokieda, K. and Matsumura, M. (2001) Morphology of a TiO2 Photocatalyst (Degussa, P-25) Consisting of Anatase and Rutile Crystalline Phases. Journal of Catalysis, 203, 82-86.
https://doi.org/10.1006/jcat.2001.3316
[38]  Alves, W., Ribeiro, A.O., Pinheiro, M.V.B., et al. (2011) Quenching of Photoactivity in Phthalocyanine Copper(II)-Titanate Nanotube Hybrid Systems. The Journal of Physical Chemistry C, 115, 12082-12089.
https://doi.org/10.1021/jp202101r
[39]  Parnicka, P., Mazierski, P., Grzyb, T., et al. (2018) Influence of the Preparation Method on the Photocatalytic Activity of Nd-Modified TiO2. Beilstein Journal of Nanotechnology, 9, 447-459.
https://doi.org/10.3762/bjnano.9.43
[40]  Zhang, Y., Zhang, H., Xu, Y. and Wang, Y. (2004) Significant Effect of Lanthanide Doping on the Texture and Properties of Nanocrystalline Mesoporous TiO2. Journal of Solid State Chemistry, 177, 3490-3498.
https://doi.org/10.1016/j.jssc.2004.05.026
[41]  Subramaniam, M.N., Goh, P.S., Ismail, A.F. and Lau, W.J. (2016) Effect of Titania Nanotubes on the Flux and Separation Performance of Polyethersulfone Membranes. IOP Conference Series: Earth and Environmental Science, 36, Article ID: 012024.
https://doi.org/10.1088/1755-1315/36/1/012024
[42]  Huang, S., Si, Z., Li, X., et al. (2016) A Novel Au/R-GO/Tnts Electrode for H2O2, O2 and Nitrite Detection. Sensors and Actuators B: Chemical, 234, 264-272.
https://doi.org/10.1016/j.snb.2016.04.167
[43]  Van Viet, P., Phan, B.T., Mott, D., Maenosono, S., Sang, T.T. and Thi, C.M. (2018) Silver Nanoparticle Loaded TiO2 Nanotubes with High Photocatalytic and Antibacterial Activity Synthesized by Photoreduction Method. Journal of Photochemistry and Photobiology A: Chemistry, 352, 106-112.
https://doi.org/10.1016/j.jphotochem.2017.10.051
[44]  Tahir, B., Tahir, M. and Amin, N.A.S. (2018) Tailoring Performance of La-Modified TiO2 Nanocatalyst for Continuous Photocatalytic CO2 Reforming of CH4 to Fuels in the Presence of H2O. Energy Conversion and Management, 159, 284-298.
https://doi.org/10.1016/j.enconman.2017.12.089
[45]  Ali, I. and Kim, J.O. (2018) Visible-Light-Assisted Photocatalytic Activity of Bismuth-TiO2 Nanotube Composites for Chromium Reduction and Dye Degradation. Chemosphere, 207, 285-292.
https://doi.org/10.1016/j.chemosphere.2018.05.075
[46]  Zhang, S.P., Lin, J.S, Lin, R.K., et al. (2020) In Situ Raman Study of the Photoinduced Behavior of Dye Molecules on TiO2 (hkl) Single Crystal Surfaces. Chemical Science, 11, 6431-6435.
https://doi.org/10.1039/D0SC00588F
[47]  Monçäo, M.M., Barreto, I.C., Miguel, F.B., et al. (2022) Raman Spectroscopy Analysis of Wollastonite/Tricalcium Phosphate Glass-Ceramics after Implantation in Critical Bone Defect in Rats. Materials Sciences and Applications, 13, 317-333.
https://doi.org/10.4236/msa.2022.135017
[48]  Dong, B., He, B.-L., Huang, J., Gao, G.-Y., Yang, Z. and Li, H.-L. (2008) High Dispersion and Electrocatalytic Activity of Pd/Titanium Dioxide Nanotubes Catalysts for Hydrazine Oxidation. Journal of Power Sources, 175, 266-271.
https://doi.org/10.1016/j.jpowsour.2007.08.090
[49]  Dong, B., He, B., Chai, Y. and Liu, C. (2010) Novel Pt Nanoclusters/Titanium Dioxide Nanotubes Composites for Hydrazine Oxidation. Materials Chemistry and Physics, 120, 404-408.
https://doi.org/10.1016/j.matchemphys.2009.11.022
[50]  Wang, Y.-F., Peng, C.-F. and Chao, H.-P. (2015) Sorption of Volatile Organic Compounds on Organic Substance-Modified Titanate Nanotubes. Aerosol and Air Quality Research, 15, 2688-2699.
https://doi.org/10.4209/aaqr.2015.10.0592
[51]  Qu, X.F., Yuan, J.J., Da Deng, X., Hou, Y.C., Wang, Y.F. and Song, H.B. (2017) An Efficient Method to Form TiO2/CdS Nanotube Arrays Using Anodic Aluminum Oxide (AAO) Templates. Key Engineering Materials, 727, 374-380.
https://doi.org/10.4028/www.scientific.net/KEM.727.374
[52]  Zhao, F., Rong, Y., Wan, J., Hu, Z., Peng, Z. and Wang, B. (2018) High Photocatalytic Performance of Carbon Quantum Dots/TNTs Composites for Enhanced Photogenerated Charges Separation under Visible Light. Catalysis Today, 315, 162-170.
https://doi.org/10.1016/j.cattod.2018.02.019

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133