|
唤醒水平变化对执行功能的影响及调节机制
|
Abstract:
唤醒是生理和心理上的警觉或兴奋的一般状态。研究发现,唤醒水平变化会对认知灵活性、工作记忆、抑制控制等执行功能产生差异化影响,且影响效果受任务类型与复杂度、个体生理特征、气质类型等因素的调节。已有研究提出了唤醒假说、神经内分泌模型、注意假说,来解释唤醒水平变化调节执行功能的作用机制。未来研究应明确统一抑制控制的结构以及弄清不同唤醒状态的本质,拓展瑜伽、太极、跳绳、体操、游泳等不同体育锻炼形式的实验模型,展开对比实验细致区分两个唤醒水平和三个唤醒水平的不同效应。
Arousal is a general state of physical and psychological alertness or excitement. The study found that the change of arousal level will have a differentiated impact on executive functions such as cognitive flexibility, working memory and inhibitory control, and the effect is regulated by task type and complexity, individual physiological characteristics, temperament type and other factors. Previous studies have proposed arousal hypothesis, neuroendocrine model and attention hypothesis to explain the mechanism of arousal level change regulating executive function. Future research should clarify the structure of unified inhibition control and the essence of different arousal states, expand the experimental models of different forms of physical exercise such as yoga, Tai Chi, rope skipping, gymnastics and swimming, carry out comparative experiments, and carefully distinguish the different effects of two arousal levels and three arousal levels.
[1] | 刘红, 王德玺, 唐向东(2020). 失眠症患者的执行功能. 中华行为医学与脑科学杂志, 29(7), 666-670. |
[2] | Ao, Y. W., Yang, B., Zhang, C. J., Wu, B., Zhang, X. F., Xing, D., & Xu, H. B. (2021). Locus Coeruleus to Paraventricular Thalamus Projections Facilitate Emergence from Isoflurane Anesthesia in Mice. Frontiers in Pharmacology, 12, Article ID: 643172. https://doi.org/10.3389/fphar.2021.643172 |
[3] | Bangasser, D. A., Eck, S. R., & Sanchez, E. O. (2019). Sex Differences in Stress Reactivity in Arousal and Attention Systems. Neuropsychopharmacology, 44, 129-139. https://doi.org/10.1038/s41386-018-0137-2 |
[4] | Bangasser, D. A., Wiersielis, K. R., & Khantsis, S. (2016). Sex Differences in the Locus Coeruleus-Norepinephrine System and Its Regulation by Stress. Brain Research, 1641, 177-188. https://doi.org/10.1016/j.brainres.2015.11.021 |
[5] | Berridge, C. W., & Arnsten, A. F. T. (2013). Psychostimulants and Motivated Behavior: Arousal and Cognition. Neuroscience and Biobehavioral Reviews, 37, 1976-1984. https://doi.org/10.1016/j.neubiorev.2012.11.005 |
[6] | Blikstein, P., Gomes, J. S., Akiba, H. T., & Schneider, B. (2017). The Effect of Highly Scaffolded versus General Instruction on Students’ Exploratory Behavior and Arousal. Technology, Knowledge and Learning, 22, 105-128.
https://doi.org/10.1007/s10758-016-9291-y |
[7] | Bray, E. E., Maclean, E. L., & Hare, B. A. (2015). Increasing Arousal Enhances Inhibitory Control in Calm but Not Excitable Dogs. Animal Cognition, 18, 1317-1329. https://doi.org/10.1007/s10071-015-0901-1 |
[8] | Brydges, C. R., Clunies-Ross, K., Clohessy, M., Lo, Z. L., Nguyen, A., Rousset, C., &Fox, A. M. (2012). Dissociable Components of Cognitive Control: An Event-Related Potential (ERP) Study of Response Inhibition and Interference Suppression. PLOS ONE, 7, e34482. https://doi.org/10.1371/journal.pone.0034482 |
[9] | Canales-Johnson, A., Beerendonk, L., Blain, S., Kitaoka, S., Ezquerro-Nassar, A., Nuiten, S., & Bekinschtein, T. A. (2020). Decreased Alertness Reconfigures Cognitive Control Networks. Journal of Neuroscience, 40, 7142-7154.
https://doi.org/10.1523/JNEUROSCI.0343-20.2020 |
[10] | Cerino, E., & Sliwinski, M. (2019). Ecological Momentary Assessment of Associations among High and Low Arousal Affect and Cognitive Health. Innovation in Aging, 3, S963. https://doi.org/10.1093/geroni/igz038.3491 |
[11] | Choi, M.-H., Min, Y.-K., Kim, H.-S., Kim, J.-H., Yeon, H.-W., Choi, J.-S., & Chung, S.-C. (2013). Effects of Three Levels of Arousal on 3-Back Working Memory Task Performance. Cognitive Neuroscience, 4, 1-6.
https://doi.org/10.1080/17588928.2011.634064 |
[12] | Choy, O., Farrington, D. P., & Raine, A. (2015). The Need to Incorporate Autonomic Arousal in Developmental and Life- Course Research and Theories. Journal of Developmental and Life-Course Criminology, 1, 189-207.
https://doi.org/10.1007/s40865-015-0011-4 |
[13] | Ciria, L. F., Suárez-Pinilla, M., Williams, A. G., Jagannathan, S. R., Sanabria, D., & Bekinschtein, T. A. (2021). Different Underlying Mechanisms for High and Low Arousal in Probabilistic Learning in Humans. Cortex, 143, 180-194.
https://doi.org/10.1016/j.cortex.2021.07.002 |
[14] | Ciugureanu, E. (2015). Cognitive Flexibility in Young Children: The Impact of Arousal and Temperament. Thesis, University of Northern British Columbia. |
[15] | Cudo, A., Francuz, P., Augustynowicz, P., & Strozak, P. (2018). The Effects of Arousal and Approach Motivated Positive Affect on Cognitive Control. An ERP Study. Frontiers in Human Neuroscience, 12, Article No. 320.
https://doi.org/10.3389/fnhum.2018.00320 |
[16] | Demanet, J., Liefooghe, B., & Verbruggen, F. (2011). Valence, Arousal, and Cognitive Control: A Voluntary Task-Switching Study. Frontiers in Psychology, 2, Article No. 336. https://doi.org/10.3389/fpsyg.2011.00336 |
[17] | Diamond, A. (2013). Executive Functions. Annual Review of Psychology, 64, 135-168.
https://doi.org/10.1146/annurev-psych-113011-143750 |
[18] | Duffy, E. (1957). The Psychological Significance of the Concept of “Arousal” or “Activation”. Psychological Review, 64, 265. https://doi.org/10.1037/h0048837 |
[19] | Fujihara, H., Megumi, A., & Yasumura, A. (2021). The Acute Effect of Moderate-Intensity Exercise on Inhibitory Control and Activation of Prefrontal Cortex in Younger and Older Adults. Experimental Brain Research, 239, 1765-1778.
https://doi.org/10.1007/s00221-021-06086-9 |
[20] | Gomes, A. C., Tosini, L., Oliveira, D., Lage, G., Franchini, E., & Meira, C. (2021). Caffeine Produces Neutral Effects on Extraverts’ and Introverts’ Performance of Fundamental Motor Skills. Journal of Human Kinetics, 78, 229-237.
https://doi.org/10.2478/hukin-2021-0038 |
[21] | Grueschow, M., Kleim, B., & Ruff, C. C. (2020). Role of the Locus Coeruleus Arousal System in Cognitive Control. Journal of Neuroendocrinology, 32, Article e12890. https://doi.org/10.1111/jne.12890 |
[22] | Han, L. Z., Liu, Y. Z., Zhang, D. D., Jin, Y., & Luo, Y. J. (2013). Low-Arousal Speech Noise Improves Performance in N-Back Task: An ERP Study. PLOS ONE, 8, e76261. https://doi.org/10.1371/journal.pone.0076261 |
[23] | Hoermann, H., Mischke, M., Elmenhorst, E.-M., & Benderoth, S. (2016). Differential Effects of Sleep Deprivation on Cognitive Performance. In Proceedings of the 32nd EAAP Conference in Cascais/Portugal. |
[24] | Imbir, K. K. (2015). Does Reading Words Differing in Arousal Load Influence Interference Control in Flanker Task? Current Psychology (New Brunswick, N.J.), 36, 157-166. https://doi.org/10.1007/s12144-015-9396-9 |
[25] | Jagannathan, S. R., Ezquerro-Nassar, A., Jachs, B., Pustovaya, O. V., Bareham, C. A., & Bekinschtein, T. A. (2018). Tracking Wakefulness as It Fades: Micro-Measures of Alertness. Neuroimage, 176, 138-151.
https://doi.org/10.1016/j.neuroimage.2018.04.046 |
[26] | Keith, J. M., Jamieson, J. P., & Bennetto, L. (2019). The Influence of Noise on Autonomic Arousal and Cognitive Performance in Adolescents with Autism Spectrum Disorder. Journal of Autism and Developmental Disorders, 49, 113-126.
https://doi.org/10.1007/s10803-018-3685-8 |
[27] | Koelstra, S. (2012). Deap: A Database for Emotion Analysis; Using Physiological Signals. IEEE Transactions on Affective Computing, 3, 18-31. https://doi.org/10.1109/T-AFFC.2011.15 |
[28] | Lee, M., Sanders, R. D., Yeom, S. K., Won, D. O., Seo, K. S., Kim, H. J., & Lee, S. W. (2017). Network Properties in Transitions of Consciousness during Propofol-Induced Sedation. Scientific Reports, 7, Article No. 16791.
https://doi.org/10.1038/s41598-017-15082-5 |
[29] | Lee, T. H., Greening, S. G., Ueno, T., lewett, D. C., Ponzio, A., Sakaki, M., & Mather, M. (2018). Arousal Increases Neural Gain via the Locus Coeruleus-Noradrenaline System in Younger Adults but Not in Older Adults. Nature Human Behaviour, 2, 356-366. https://doi.org/10.1038/s41562-018-0344-1 |
[30] | Maran, T., Sachse, P., Martini, M., Weber, B., Pinggera, J., Zuggal, S., & Furtner, M. (2017). Lost in Time and Space: States of High Arousal Disrupt Implicit Acquisition of Spatial and Sequential Context Information. Frontiers in Behavioral Neuroscience, 11, Article No. 206. https://doi.org/10.3389/fnbeh.2017.00206 |
[31] | Meeusen, R., Watson, P., Hasegawa, H., Roelands, B., & Piacentini, M. F. (2006). Central Fatigue: The Serotonin Hypothesis and Beyond. Sports Medicine (Auckland, N.Z.), 36, 881-909. https://doi.org/10.2165/00007256-200636100-00006 |
[32] | Neha, G., Matthew, B., Pontifex, C. et al. (2013). The Acute Effects of Yoga on Executive Function. Journal of Physical Activity & Health, 10, 488-495. https://doi.org/10.1123/jpah.10.4.488 |
[33] | Noreika, V., Kamke, M. R., Canales-Johnson, A., Chennu, S., Bekinschtein, T. A., & Mattingley, J. B. (2020). Alertness Fluctuations When Performing a Task Modulate Cortical Evoked Responses to Transcranial Magnetic Stimulation. NeuroImage, 223, 117305. https://doi.org/10.1016/j.neuroimage.2020.117305 |
[34] | Robison, M. K., & Brewer, G. A. (2020). Individual Differences in Working Memory Capacity and the Regulation of Arousal. Attention Perception & Psychophysics, 82, 3273-3290. https://doi.org/10.3758/s13414-020-02077-0 |
[35] | Robison, M. K., & Unsworth, N. (2019). Pupillometry Tracks Fluctuations in Working Memory Performance. Attention, Perception, & Psychophysics, 81, 407-419. https://doi.org/10.3758/s13414-018-1618-4 |
[36] | Satpute, A. B., Kragel, P. A., Barrett, L. F., Wager, T. D., & Bianciardi, M. (2019). Deconstructing Arousal into Wakeful, Autonomic and Affective Varieties. Neuroscience Letters, 693, 19-28. https://doi.org/10.1016/j.neulet.2018.01.042 |
[37] | Scammell, T. E., Arrigoni, E., & Lipton, J. O. (2017). Neural Circuitry of Wakefulness and Sleep. Neuron, 93, 747-765.
https://doi.org/10.1016/j.neuron.2017.01.014 |
[38] | Schevernels, H., Bombeke, K., Van der Borght, L., Hopf, J. M., Krebs, R. M., & Boehler, C. N. (2015). Electrophysiological Evidence for the Involvement of Proactive and Reactive Control in a Rewarded Stop-Signal Task. NeuroImage, 121, 115-125. https://doi.org/10.1016/j.neuroimage.2015.07.023 |
[39] | Shaw, T. H., Nguyen, C., Satterfield, K., Ramirez, R., & Mcknight, P. E. (2016). Cerebral Hemovelocity Reveals Differential Resource Allocation Strategies for Extraverts and Introverts during Vigilance. Experimental Brain Research, 234, 577-585. https://doi.org/10.1007/s00221-015-4481-8 |
[40] | Srivas, C., Stuart, O., Ram, A., Menon, D. K., Bekinschtein, T. A., & Bassett, D. S. (2016). Brain Connectivity Dissociates Responsiveness from Drug Exposure during Propofol-Induced Transitions of Consciousness. PLOS Computational Biology, 12, e1004669. https://doi.org/10.1371/journal.pcbi.1004669 |
[41] | Sullivan, M. D., Huang, R., Rovetti, J., Sparrow, E. P., & Spaniol, J. (2021). Associations between Phasic Arousal and Decisions under Risk in Younger and Older Adults. Neurobiology of Aging, 105, 262-271.
https://doi.org/10.1016/j.neurobiolaging.2021.05.001 |
[42] | Unsworth, N., & Robison, M. K. (2017). The Importance of Arousal for Variation in Working Memory Capacity and Attention Control: A Latent Variable Pupillometry Study. Journal of Experimental Psychology-Learning Memory and Cognition, 43, 1962-1987. https://doi.org/10.1037/xlm0000421 |
[43] | van der Linden, D., Tops, M., & Bakker, A. B. (2021). The Neuroscience of the Flow State: Involvement of the Locus Coeruleus Norepinephrine System. Frontiers in Psychology, 12, Article ID: 645498.
https://doi.org/10.3389/fpsyg.2021.645498 |
[44] | Wisor, J. (2018). Dopamine and Wakefulness: Pharmacology, Genetics, and Circuitry. In H.-P. Landolt, & D.-J. Dijk (Eds.), Sleep-Wake Neurobiology and Pharmacology (Vol. 253, pp. 321-335). Springer. https://doi.org/10.1007/164_2018_95 |
[45] | Yerkes, R. M., & Dodson, J. D. (1908). The Relation of Strength of Stimulus to Rapidity of Habit-Formation. Journal of Comparative Neurology and Psychology, 18, 459-482. https://doi.org/10.1002/cne.920180503 |
[46] | Zhang, D., Cheng, W., & Yang, H. (2019). Evaluation of Workload, Arousal, Fatigue, and Attention on Time-Series Vigilance Task. In S. Z. Long, & B. S. Dhillon (Eds.), Proceedings of the 18th International Conference on MMESE (pp. 65-69). Springer. https://doi.org/10.1007/978-981-13-2481-9_9 |
[47] | Zhao, R., Zhang, X., Fei, N., Zhu, Y., Sun, J., Liu, P., & Qin, W. (2019). Decreased Cortical and Subcortical Response to Inhibition Control after Sleep Deprivation. Brain Imaging and Behavior, 13, 638-650.
https://doi.org/10.1007/s11682-018-9868-2 |