全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于金属化处理的FBG温度增敏研究
Temperature Sensitization of FBG Based on Metallization

DOI: 10.12677/JSTA.2023.112017, PP. 158-165

Keywords: 光纤布拉格光栅,磁控溅射,金属化处理
Fiber Bragg Grating
, Magnetron Sputtering, Metallization

Full-Text   Cite this paper   Add to My Lib

Abstract:

光纤布拉格光栅(Fiber Bragg Grating, FBG)因其具有小而轻,传感灵敏度高,可复用性强,抗电磁干扰能力强,可实现多点分布式测量等特点,被广泛的应用于航空航天、电力工业、石油化工和地质结构监测等各个领域。由于光纤光栅在应力、温度、浓度、位移、加速度、湿度等传感方向的迅速发展,如何提高传感器的灵敏度一直是一个热点话题。本文通过研究FBG的温度增敏方式,采用磁控溅射的方法对光纤布拉格光栅进行金属化处理,结果表明镍、铜、银涂层材料下的FBG温度传感灵敏度有明显提高、线性度均在0.995以上。通过改变镀膜材料的先后顺序,得到Ni–Ag涂层效果最好,相较于未经处理的FBG,温度灵敏度提升34.7%。
Fiber Bragg Grating (FBG) is widely used in various fields, such as aerospace, electric power industry, petrochemical industry and geological structure monitoring, for its characteristics of small and light, high sensing sensitivity, strong reus-ability, strong electromagnetic interference resistance and enabling multi-point distributed meas-urement. Because of the rapid development of fiber Bragg grating in stress, temperature, concen-tration, displacement, acceleration, humidity and other sensing directions, how to improve the sen-sitivity of sensors has been a hot topic. In this paper, the temperature sensitization method of FBG is studied, and the magnetron sputtering method is used to metallify fiber Bragg grating. The results show that the sensitivity of temperature sensing of FBG under Ni, Cu and silver coating materials is significantly improved, and the linearity is above 0.995. By changing the sequence of coating mate-rials, the Ni-Ag coating has the best effect, and the temperature sensitivity is increased by 34.7% compared with the untreated FBG.

References

[1]  Liu, J., Zhu, G., Zhang, J., Wen, Y., Xiong, W., Zhang, Y., Chen, Y., Cai, X., Li, Z. and Hu, Z. (2018) Mode Division Multiplexing Based on Ring Core Optical Fibers. IEEE Journal of Quantum Electronics, 54, 1-18.
https://doi.org/10.1109/JQE.2018.2864561
[2]  Ashry, I., Mao, Y., Wang, B., Hvending, F., Bukhamsin, A., Ng, T.K. and Ooi, B.S. (2022) A Review of Distributed Fiber—Optic Sensing in the Oil and Gas Industry. Journal of Lightwave Technology, 40, 1407-1431.
https://doi.org/10.1109/JLT.2021.3135653
[3]  Zheng, H., Zhang, J., Guo, N. and Zhu, T. (2021) Distributed Op-tical Fiber Sensor for Dynamic Measurement. Journal of Lightwave Technology, 39, 3801-3811.
https://doi.org/10.1109/JLT.2020.3039812
[4]  Li, W., Yuan, Y., Yang, J., Yang, J. and Yuan, L. (2018) In-Fiber Integrated Quasi-Distributed High Temperature Sensor Array. Optics Express, 26, 34113-34121.
https://doi.org/10.1364/OE.26.034113
[5]  Yilbas, B.S., Arif, A. and Aleem, B. (2010) Laser Welding of Low Carbon Steel and Thermal Stress Analysis. Optics & Laser Technology, 42, 760-768.
https://doi.org/10.1016/j.optlastec.2009.11.024
[6]  吴昊, 张洋, 王帅, 刘瀚霖, 辛璟焘. 超短FBG的高灵敏度温度传感器[J]. 激光与红外, 2021, 51(8): 1057-1064.
[7]  Keller Jr., D, Eagan, D.R., Fochesatto, G.J., Peterson, R. and Parker, A. (2019) Advantages of Fiber Bragg Gratings for Measuring Electric Motor Loadings in Aerospace Appli-cation. Review of Scientific Instruments, 90, Article No. 75005.
https://doi.org/10.1063/1.5093556
[8]  Li, Y., Zhang, H., Feng, Y. and Peng, G. (2009) Metal Coating of Fiber Bragg Grating and the Temperature Sensing Character after Metallization. Optical Fiber Technology, 15, 391-397.
https://doi.org/10.1016/j.yofte.2009.05.001
[9]  Sengupta, D., Shankar, M.S., Reddy, P.S., Rlins, P. and Kishore, P. (2012) An Improved Low Temperature Sensing Using PMMA Coated FBG. Asia Communications & Photonics Conference & Exhibition, Shanghai, China, 13-16 November 2011.
https://doi.org/10.1364/ACP.2011.831103
[10]  Im, J., Kim, M., Choi, K.S., Hwang, T.K. and Kwon, I.-B. (2014) Aluminum-Thin-Film Packaged Fiber Bragg Grating Probes for Monitoring the Maximum Tensile Strain of Composite Materials. Applied Optics, 53, 3615-3620.
https://doi.org/10.1364/AO.53.003615
[11]  Hu, X.M. (2015) Microstructure and Sensing Properties of 42CrMo Steel After Nickeling. Foundry Technology, 6, 15-23.
[12]  Wang, C.H., Chen, W.M. and Fu, Z.F. (2016) Characteristics of Automatic Bonded Fiber Bragg Grating with Metal Materials. Acta Photonica Sinica, 45.
https://doi.org/10.3788/gzxb20164508.0806003
[13]  Perry, M., Niewczas, P. and Johnston, M. (2013) Induction Brazing of Type-I Fiber Bragg Gratings into Kovar Ferrules Exploiting Curie Transition. IEEE Sensors Journal, 13, 816-823.
https://doi.org/10.1109/JSEN.2012.2227705
[14]  Mekid, S. and Daraghma, H. (2017) Experimental Ul-trasonic Sub-Surface Consolidation of Fiber Bragg Grating for Sensorial Materials. Journal of Materials Processing Technology, 252, 673-679.
https://doi.org/10.1016/j.jmatprotec.2017.10.036
[15]  Yu, J.C., Wu, Z.L., Yang, X., Han, X.Y. and Zhao, M.S. (2018) Tilted Fiber Bragg Grating Sensor Using Chemical Plating of a Palladium Membrane for the Detection of Hydro-gen Leakage. Sensors, 18, Article No. 4478.
https://doi.org/10.3390/s18124478
[16]  Dai, J., Yang, M. and Xun, Y. (2013) Optical Hydrogen Sensor Based on Etched Fiber Bragg Grating Sputtered with Pd/Ag Composite Film. Optical Fiber Technology, 19, 26-30.
https://doi.org/10.1016/j.yofte.2012.09.006
[17]  Tu, Y., Huang, Y.K. and Tu, S.-T. (2019) Real-Time Monitoring of Bolt Clamping Force at High Temperatures Using Metal-Packaged Regenerated Fiber Bragg Grating Sensors. Interna-tional Journal of Pressure Vessels and Piping, 172, 119-126.
https://doi.org/10.1016/j.ijpvp.2019.03.006

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133