全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于状态观测器的Markov跳变系统的有效预测控制
Efficient Model Predictive Control for Markovian Jump Systems: An Observer-Based Approach

DOI: 10.12677/MOS.2023.122114, PP. 1207-1226

Keywords: 有效模型预测控制,Markov跳变系统,观测器,初始可行域,均方稳定;Efficient Model Predictive Control, Markovian Jump Systems, Observer, Initial Feasible Region, Mean-Square Stability

Full-Text   Cite this paper   Add to My Lib

Abstract:

研究了一类具有多面体参数不确定性和状态和输入硬约束的Markov跳变系统的基于观测器的有效模型预测控制问题。考虑到实际应用中系统状态难以获得,该问题的目的是在EMPC框架下设计基于估计状态的控制器,从而在计算量、初始可行域和控制性能之间取得良好的平衡。通过类Lyapunov函数法、引入自由加权矩阵和不等式技术,解决了变量间耦合引起的非凸性问题。随后,利用“最小–最大”策略,建立了一些模态相关的优化问题,以促进EMPC算法的形成,其中反馈增益和观测器增益是离线设计的,摄动量是通过求解模态相关的在线优化问题得到的。并给出了严格保证EMPC算法可行性和Markov跳变系统均方稳定性的充分条件。最后,通过算例验证了所提方法的有效性。
This paper is concerned with the observer-based efficient model predictive control (EMPC) problem for a class of Markovian jump systems (MJSs) subject to polytopic parameter uncertainties and hard constraints on states and inputs. Considering the difficulty of obtaining the system state in the prac-tice, the aim of the proposed problem is to design the estimate state-based controller in the frame-work of EMPC so as to obtain a good balance among the computation burden, the initial feasible re-gion and the control performance. By means of the Lyapunov-like function approach, the introduc-tion of free weighting matrices and inequality techniques, the non-convexity problem caused by couplings between variables is solved. Subsequently, by using the “min-max” strategy, some mode-dependent optimizations are established to facilitate the formation of EMPC algorithm, where the feedback gain and the observer gain are designed off-line and the perturbation is calculated by solving an online optimization dependent of the mode. Furthermore, sufficient conditions are pre-sented to rigidly guarantee the feasibility of the proposed EMPC algorithm and the mean-square stability of the underlying MJSs. Finally, an illustrative example is used to demonstrate the validity of the proposed methods.

References

[1]  Zhang, B. and Song, Y. (2022) Model-Predictive Control for Markovian Jump Systems under Asynchronous Scenario: An Op-timizing Prediction Dynamics Approach. IEEE Transactions on Automatic Control, 67, 4900-4907.
https://doi.org/10.1109/TAC.2022.3164832
[2]  Liu, L.J., Xu, N. and Zhao, X. (2022) Stability and L1-Gain Analysis of Nonlinear Positive Markov Jump Systems Based on a Switching Transition Probability. ISA Transactions, 121, 86-94.
https://doi.org/10.1016/j.isatra.2021.04.007
[3]  Song, Y., Wang, Z., Zou, L. and Liu, S. (2022) Endec-Decoder-Based N-Step Model Predictive Control: Detectability, Stability and Optimization. Automatica, 135, Article ID: 109961.
https://doi.org/10.1016/j.automatica.2021.109961
[4]  Wan, X., Wei, F., Zhang, C.K. and Wu, M. (2022) Hybrid Varia-bles-Dependent Event-Triggered Model Predictive Control Subject to Polytopic Uncertainties. International Journal of Systems Science, 53, 3042-3055.
https://doi.org/10.1080/00207721.2022.2068694
[5]  Cao, Z., Niu, Y. and Song, J. (2019) Finite-Time Sliding-Mode Control of Markovian Jump Cyber-Physical Systems against Randomly Occurring Injection Attacks. IEEE Transactions on Automatic Control, 65, 1264-1271.
https://doi.org/10.1109/TAC.2019.2926156
[6]  Hu, J., Zhang, H., Liu, H. and Yu, X. (2021) A Survey on Sliding Mode Control for Networked Control Systems. International Journal of Systems Science, 52, 1129-1147.
https://doi.org/10.1080/00207721.2021.1885082
[7]  He, H., Qi, W., Liu, Z. and Wang, M. (2021) Adaptive At-tack-Resilient Control for Markov Jump System with Additive Attacks. Nonlinear Dynamics, 103, 1585-1598.
https://doi.org/10.1007/s11071-020-06085-5
[8]  Wang, Y., Ahn, C.K., Yan, H. and Xie, S. (2020) Fuzzy Control and Filtering for Nonlinear Singularly Perturbed Markov Jump Systems. IEEE Transactions on Cybernetics, 51, 297-308.
https://doi.org/10.1109/TCYB.2020.3004226
[9]  Wang, Y., Zou, L., Ma, L., Zhao, Z. and Guo, J. (2021) A Survey on Control for Takagi-Sugeno Fuzzy Systems Subject to Engineering-Oriented Complexities. Systems Science & Control Engi-neering, 9, 334-349.
https://doi.org/10.1080/21642583.2021.1907259
[10]  Li, X., Song, Q., Zhao, Z., Liu, Y. and Alsaadi, F.E. (2022) Opti-mal Control and Zero-Sum Differential Game for Hurwicz Model Considering Singular Systems with Multifactor and Uncer-tainty. International Journal of Systems Science, 53, 1416-1435.
https://doi.org/10.1080/00207721.2021.2005175
[11]  Kothare, M.V., Balakrishnan, V. and Morari, M. (1996) Robust Constrained Model Predictive Control Using Linear Matrix Inequalities. Automatica, 32, 1361-1379.
https://doi.org/10.1016/0005-1098(96)00063-5
[12]  Zou, Y., Su, X., Li, S., Niu, Y. and Li, D. (2019) Event-Triggered Distributed Predictive Control for Asynchronous Coordination of Multi-Agent Systems. Automatica, 99, 92-98.
https://doi.org/10.1016/j.automatica.2018.10.019
[13]  Zhang, Y., Lim, C.C. and Liu, F. (2018) Robust Mixed H2/H∞ Model Predictive Control for Markov Jump Systems with Partially Uncertain Transition Probabilities. Journal of the Franklin Institute, 355, 3423-3437.
https://doi.org/10.1016/j.jfranklin.2018.01.035
[14]  Hu, J. and Ding, B. (2019) An Efficient Offline Implementation for Output Feedback Min-Max MPC. International Journal of Robust and Nonlinear Control, 29, 492-506.
https://doi.org/10.1002/rnc.4401
[15]  Ding, B.C. and Huang, B. (2007) Comments on “A Feedback Min-Max MPC Al-gorithm for LPV Systems Subject to Bounded Rates of Change of Parameters”. IEEE Transactions on Automatic Control, 52, 970.
https://doi.org/10.1109/TAC.2007.895880
[16]  Song, Y., Li, M., Luo, X., Yang, G. and Wang, C. (2019) Improved Symmetric and Nonnegative Matrix Factorization Models for Undirected, Sparse and Large-Scaled Networks: A Triple Factori-zation-Based Approach. IEEE Transactions on Industrial Informatics, 16, 3006-3017.
https://doi.org/10.1109/TII.2019.2908958
[17]  Ding, T., Zhu, S., He, J., Chen, C. and Guan, X. (2021) Differentially Pri-vate Distributed Optimization via State and Direction Perturbation in Multiagent Systems. IEEE Transactions on Automatic Control, 67, 722-737.
https://doi.org/10.1109/TAC.2021.3059427
[18]  Zhang, Q. and Zhou, Y. (2022) Recent Advances in Non-Gaussian Sto-chastic Systems Control Theory and Its Applications. International Journal of Network Dynamics and Intelligence, 1, 111-119.
https://doi.org/10.53941/ijndi0101010
[19]  Dong, Y., Song, Y. and Wei, G. (2020) Efficient Model-Predictive Control for Nonlinear Systems in Interval Type-2 TS Fuzzy Form under Round-Robin Protocol. IEEE Transactions on Fuzzy Systems, 30, 63-74.
https://doi.org/10.1109/TFUZZ.2020.3031394
[20]  Zou, L., Wang, Z., Hu, J., Liu, Y. and Liu, X. (2021) Communica-tion-Protocol-Based Analysis and Synthesis of Networked Systems: Progress, Prospects and Challenges. International Journal of Systems Science, 52, 3013-3034.
https://doi.org/10.1080/00207721.2021.1917721
[21]  Yang, Y., Wen, H., Fan, M., Xie, M., Peng, S., Norambuena, M. and Rodriguez, J. (2020) Computation-Efficient Model Predictive Control with Common-Mode Voltage Elimination for Five-Level ANPC Converters. IEEE Transactions on Transportation Electrification, 6, 970-984.
https://doi.org/10.1109/TTE.2020.2996608
[22]  Kouvaritakis, B., Rossiter, J.A. and Schuurmans, J. (2000) Efficient Ro-bust Predictive Control. IEEE Transactions on Automatic Control, 45, 1545-1549.
https://doi.org/10.1109/9.871769
[23]  Wang, X., Sun, Y. and Ding, D. (2022) Adaptive Dynamic Programming for Net-worked Control Systems under Communication Constraints: A Survey of Trends and Techniques. International Journal of Network Dynamics and Intelligence, 1, 85-98.
https://doi.org/10.53941/ijndi0101008
[24]  Ju, Y., Tian, X., Liu, H. and Ma, L. (2021) Fault Detection of Networked Dynamical Systems: A Survey of Trends and Techniques. International Journal of Systems Science, 52, 3390-3409.
https://doi.org/10.1080/00207721.2021.1998722
[25]  Yang, H., Wang, Z., Xia, Y. and Zuo, Z. (2022) EMPC with Adaptive APF of Obstacle Avoidance and Trajectory Tracking for Autonomous Electric Vehicles. ISA Transactions.
https://doi.org/10.1016/j.isatra.2022.09.018
[26]  Zamani, M.R., Rahmani, Z. and Rezaie, B. (2021) A Novel Model Predictive Control for a Piecewise Affine Class of Hybrid System with Repetitive Disturbance. ISA Transactions, 108, 18-34.
https://doi.org/10.1016/j.isatra.2020.08.023
[27]  Sariyildiz, E. and Ohnishi, K. (2014) Stability and Robust-ness of Disturbance-Observer-Based Motion Control Systems. IEEE Transactions on Industrial Electronics, 62, 414-422.
https://doi.org/10.1109/TIE.2014.2327009
[28]  Xu, B., Hu, J., Jia, C., Cao, Z. and Huang, J. (2021) State Estimation via Prediction-Based Scheme for Linear Time- Varying Uncertain Networks with Communication Transmission Delays and Sto-chastic Coupling. Systems Science & Control Engineering, 9, 173-187.
https://doi.org/10.1080/21642583.2021.1888820
[29]  Wang, N., Qian, W. and Xu, X. (2021) H∞ Performance for Load Frequency Control Systems with Random Delays. Systems Science & Control Engineering, 9, 243-259.
https://doi.org/10.1080/21642583.2021.1893860
[30]  Zhao, Y., He, X., Ma, L. and Liu, H. (2022) Unbiased-ness-Constrained Least Squares State Estimation for Time- Varying Systems with Missing Measurements under Round-Robin Protocol. International Journal of Systems Science, 53, 1925-1941.
https://doi.org/10.1080/00207721.2022.2031338
[31]  Costa, O.L., Assump??o Filho, E.O., Boukas, E.K. and Marques, R.P. (1999) Constrained Quadratic State Feedback Control of Discrete-Time Markovian Jump Linear Systems. Automatica, 35, 617-626.
https://doi.org/10.1016/S0005-1098(98)00202-7
[32]  Ma, H., Zhang, W. and Hou, T. (2012) Infinite Horizon H2/H∞ Control for Discrete-Time Time-Varying Markov Jump Systems with Multiplicative Noise. Automatica, 48, 1447-1454.
https://doi.org/10.1016/j.automatica.2012.05.006

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133