全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

古代玻璃制品的成分分析与鉴别的模型研究
Research on the Model of Ancient Glass Products Classification and Identification

DOI: 10.12677/MOS.2023.122112, PP. 1185-1198

Keywords: 古代玻璃制品分类,配对t检验,K均值聚类,随机森林,交叉验证;Ancient Glass Products Classification, Matched Samples T-Test, K-Means Clustering, Random Forest, Cross-Validation

Full-Text   Cite this paper   Add to My Lib

Abstract:

为帮助古代玻璃制品鉴别者通过化学成分的定量分析判断玻璃文物类型,解决如何对玻璃制品准确分类的问题,对五十余件玻璃样品多处采样,以采样得到的六十余份数据进行量化分析,使用K均值聚类模型、随机森林模型对其种类进行分析与验证,筛选出对玻璃样品是否风化以及玻璃样品的种类划分有显著性区别的化学成分,建立数学模型并通过将已知数据分为训练集和验证集交叉验证去评价模型准确度,并对灵敏度进行分析,得到判断玻璃制品是否风化以及分类玻璃制品的最优模型。
In order to help archeologist to quantitatively classify the type of relics of glass by the difference of chemical composition and solve the problem of Ancient glass products classification accurately, this paper proposes to make a quantitative analysis of the more than sixty pieces of data obtained from sampling more than 50 ancient glass samples, analyzing and verifying the species by using K-means Clustering model and Random forest model, screening the chemical composition which make a sig-nificant role in classification of whether weathering or type of glass, building a mathematical model, valuing the accuracy of the model by dividing data into two categories of test and validation and an-alyzing its sensitivity, then acquiring the optimal model. The purpose of this study is to help arche-ologist to quantitatively classify the type of relics of glass by the difference of chemical composition.

References

[1]  朱瑛培. 新疆鄯善县洋海墓地出土玻璃珠的成分体系和制作工艺研究[D]: [硕士学位论文]. 西安: 西北大学, 2018.
[2]  聂益芳, Mbugua Allan Wainaina, 李余, 姚行艳, 蔡雪松. 无线信道建模中二分K均值聚类径分簇算法[J/OL]. 电波科学学报: 1-8,
https://kns.cnki.net/kcms/detail/41.1185.tn.20220613.1209.002.html, 2022-09-18.
[3]  杨文君. 入侵检测技术中k-means聚类算法综述[J]. 科学技术创新, 2018(36): 65-66.
[4]  李嘉康, 陶智麟, 徐波, 徐大勇, 堵劲松, 李华杰. 基于随机森林的烟叶纹理定量分析[J]. 湖北农业科学, 2022, 61(14): 155-159.
[5]  吕广旭, 卢加奇, 魏先燕, 王小英. 基于随机森林-聚类混合方法的多分类入侵检测研究[J]. 现代信息科技, 2022, 6(16): 165-167.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133