全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

脉冲等离子体球磨放电的数值模拟研究
Numerical Simulation of Pulsed Plasma-Assisted Milling Discharge

DOI: 10.12677/MOS.2023.122111, PP. 1171-1184

Keywords: 脉冲激励,填充介质阻挡放电,数值模拟,放电特性,粒子特性;Pulse Excitation, Filled Dielectric Barrier Discharge, Numerical Simulation, Discharge Characteristics, Particle Characteristics

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了研究等离子体球磨罐内部的放电机理,并探索在球磨罐中所添加的磨球材质对放电的影响,本文根据流体理论对球磨罐设备进行了二维建模,模拟了在三种情况下(无填充磨球、氧化铝填充磨球和不锈钢填充磨球)一个脉冲电压周期内球磨罐放电腔体中的放电过程,通过数值分析来对比仿真结果中的各种放电参数,并结合实际球磨罐运行时的放电图片和仿真结果图片体现了建模仿真的可靠性。结果表明,添加金属材质磨球时的放电电流幅值(5.0 A)较无磨球(3.5 A)和氧化铝磨球(3.7 A)情况下都要高,对于放电过程中的最大电子密度,添加金属磨球情况下(2.52 e12/cm3)较无磨球(5.48 e11/cm3)和氧化铝磨球(8.25 e11/cm3)情况下都要高,同时对于像平均功率密度、电子温度和亚稳态粒子密度等参数,都是以金属磨球情况下的数据最大,氧化铝磨球情况下次之,无磨球情况下最小,可见填充磨球可有提高球磨罐内的放电强度,填充金属材质磨球时的这种提高更加显著。
In order to study the discharge mechanism inside the plasma ball milling tank and explore the in-fluence of the material of grinding balls added in the tank on the discharge, a two-dimensional model of the equipment of the ball milling tank was established according to the fluid theory, and the discharge process in the discharge cavity of the ball milling tank was simulated under three conditions (no filled grinding balls, alumina filled grinding balls and stainless steel filled grinding balls) in a pulse voltage cycle. Various discharge parameters in the simulation results were com-pared by numerical analysis, and the modeling was embodied by combining the discharge pictures and simulation results pictures of the actual ball milling tank. The results show that the discharge current amplitude (5.0 A) with metal grinding ball is higher than that without grinding ball (3.5 A) and alumina grinding ball (3.7 A), and the maximum electron density in the discharge process with metal grinding ball (2.52 e12/c m3) is lower than that without grinding ball (5.48 e11/cm3) and alumina grinding ball (8.25 E11). At the same time, for parameters such as average power density, electron temperature and metastable particle density, the data are the largest in the case of metal grinding ball, followed by alumina grinding ball, and the smallest in the case of no grinding ball. It can be seen that filling grinding ball can improve the discharge intensity in the ball milling tank, and this improvement is more detailed when filling metal grinding ball.

References

[1]  Wang, S., Wang, W., Liu, Z. and Yang, D. (2017) Comparative Research of Plasma-Assisted Milling and Traditional Milling in Synthesizing AlN. Plasma Science and Technology, 19, Article ID: 064005.
https://doi.org/10.1088/2058-6272/aa62f8
[2]  Shkodich, N.F., Kuskov, K.V., Kovalev, I.D. and Scheck, Y.B. (2019) Nanostructured Cu-Cr-W Pseudoalloys by Combined Use of High-Energy Ball Milling and Spark Plasma Sin-tering. IOP Conference Series: Materials Science and Engineering, 558, Article ID: 012047.
https://doi.org/10.1088/1757-899X/558/1/012047
[3]  Neyts, E.C. and Bogaerts, A. (2014) Understanding Plasma Catalysis through Modelling and Simulation—A Review. Journal of Physics D: Applied Physics, 47, Article ID: 224010.
https://doi.org/10.1088/0022-3727/47/22/224010
[4]  Kang, W.S., Park, J.M., Kim, Y. and Hong, S.H. (2003) Numerical Study on Influences of Barrier Arrangements on Dielectric Barrier Discharge Characteristics. IEEE Transac-tions on Plasma Science, 31, 504-510.
https://doi.org/10.1109/TPS.2003.815469
[5]  Van Laer, K. and Bogaerts, A. (2017) Influence of Gap Size and Dielectric Constant of the Packing Material on the Plasma Behaviour in a Packed Bed DBD Reactor: A Fluid Modelling Study. Plasma Processes and Polymers, 14, Article ID: 1600129.
https://doi.org/10.1002/ppap.201600129
[6]  Gadkari, S., Tu, X. and Gu, S. (2017) Fluid Model for a Partially Packed Dielectric Barrier Discharge Plasma Reactor. Physics of Plasmas, 24, Article ID: 093510.
https://doi.org/10.1063/1.5000523
[7]  Gadkari, S. and Gu, S. (2018) Influence of Catalyst Packing Configuration on the Discharge Characteristics of Dielectric Barrier Discharge Reactors: A Numerical Investigation. Physics of Plasmas, 25, Article ID: 063513.
https://doi.org/10.1063/1.5030508
[8]  Cheng, H., Ma, M., Zhang, Y., Liu, D. and Lu, X. (2020) The Plasma En-hanced Surface Reactions in a Packed Bed Dielectric Barrier Discharge Reactor. Journal of Physics D: Applied Physics, 53, Article ID: 144001.
https://doi.org/10.1088/1361-6463/ab651e
[9]  Kang, M., Kim, S., Kim, H. and Uhm, H. (2017) Nanosecond Pulse Plasma Dry Reforming of Methane with Carbon Dioxide for Syngas Production. Applied Catalysis B: Environ-mental, 201, 217-244.
[10]  Zhang, Y.-R., Van Laer, K., Neyts, E.C. and Bogaerts, A. (2016) Can Plasma Be Formed in Catalyst Pores? A Modeling Investigation. Applied Catalysis B: Environmental, 185, 56-67.
https://doi.org/10.1016/j.apcatb.2015.12.009
[11]  Wang, W., Kim, H.H., Van Laer, K. and Bogaerts, A. (2018) Streamer Propagation in a Packed Bed Plasma Reactor for Plasma Catalysis Applications. Chemical Engineering Journal, 334, 2467-2479.
https://doi.org/10.1016/j.cej.2017.11.139
[12]  Ren, C., He, X., Jia, P., Wu, K. and Li, X. (2020) Influence of Asymmetric Degree on the Characteristics of a Homogeneous Barrier Discharge Excited by an Asymmetric Sine. Physics of Plasmas, 27, Article ID: 113507.
https://doi.org/10.1063/5.0024907
[13]  Lymberopoulos, D.P. and Economou, D.J. (1993) Fluid Simulations of Glow Discharges: Effect of Metastable Atoms in Argon. Journal of Applied Physics, 73, 3668-3679.
https://doi.org/10.1063/1.352926
[14]  Babaeva, N.Y., Tereshonok, D., Naidis, G.V. and Smirnov, B.M. (2016) Streamer Branching on Clusters of Solid Particles in Air and Air Bubbles in Liquids. Journal of Physics: Conference Se-ries, 774, Article ID: 012151.
https://doi.org/10.1088/1742-6596/774/1/012151
[15]  Zhang, Y.H., Ning, W.J. and Dai, D. (2018) Numerical In-vestigation on the Dynamics and Evolution Mechanisms of Multiple-Current-Pulse Behavior in Homogeneous Helium Dielectric-Barrier Discharges at Atmospheric Pressure. AIP Advances, 8, Article ID: 035008.
https://doi.org/10.1063/1.5019815
[16]  Liu, Q., Liu, Y., Samir, T. and Ma, Z. (2014) Numerical Study of Effect of Secondary Electron Emission on Discharge Characteristics in Low Pressure Capacitive RF Argon Discharge. Physics of Plasmas, 21, Article ID: 083511.
https://doi.org/10.1063/1.4894223
[17]  Russ, H., Neiger, M. and Lang, J.E. (1999) Simulation of Micro Discharg-es for the Optimization of Energy Requirements for Removal of NO/Sub x/ from Exhaust Gases. IEEE Transactions on Plasma Science, 27, 38-39.
https://doi.org/10.1109/27.763019
[18]  Liu, R., Liu, Y., Jia, W. and Zhou, Y. (2017) A Comparative Study on Continuous and Pulsed RF Argon Capacitive Glow Discharges at Low Pressure by Fluid Modeling. Physics of Plasmas, 24, Article ID: 013517.
https://doi.org/10.1063/1.4974762
[19]  Hu, H., He, F., Zhu, P. and Ouyang, J. (2018) Numerical Study of the In-fluence of Dielectric Tube on Propagation of Atmospheric Pressure Plasma Jet Based on Coplanar Dielectric Barrier Discharge. Plasma Science and Technology, 20, Article ID: 054010.
https://doi.org/10.1088/2058-6272/aaaad9
[20]  Jiang, H., Li, G., Liu, H., Zhang, C. and Shao, T. (2021) Numerical Verification of the Two-Spike-Current Behavior in the Initial Stage of Plasma Formation in a Pulsed Surface Dielectric Barrier Discharge. Journal of Physics D: Applied Physics, 54, Article ID: 345201.
https://doi.org/10.1088/1361-6463/ac0705
[21]  Kruszelnicki, J., Engeling, K.W., Foster, J.E., Xiong, Z. and Kush-ner, M.J. (2017) Propagation of Negative Electrical Discharges through 2-Dimensional Packed Bed Reactors. Journal of Physics D: Applied Physics, 50, Article ID: 025203.
https://doi.org/10.1088/1361-6463/50/2/025203
[22]  Kanazawa, S., Kogoma, M., Moriwaki, T. and Okazaki, S. (1988) Stable Glow Plasma at Atmospheric Pressure. Journal of Physics D: Applied Physics, 21, 838-840.
https://doi.org/10.1088/0022-3727/21/5/028
[23]  Radu, I., Bartnikas, R. and Wertheimer, M.R. (2003) Frequency and Voltage Dependence of Glow and Pseudoglow Discharges in Helium under Atmospheric Pressure. IEEE Transac-tions on Plasma Science, 31, 1363-1378.
https://doi.org/10.1109/TPS.2003.820970
[24]  Robertson, S. (2013) Sheaths in Laboratory and Space Plasmas. Plasma Physics and Controlled Fusion, 55, Article ID: 093001.
https://doi.org/10.1088/0741-3335/55/9/093001
[25]  樊康旗, 李小江, 贾建援, 刘小院. 空间等离子体鞘层的时域特性研究[J]. 电子科技, 2010, 23(11): 119-122.
[26]  Xiong, R., Zhao, P., Wang, H., Zhang, Y. and Jiang, W. (2020) Impact of Different Packing Beads Methods for Streamer Generation and Propagation in Packed-Bed Dielectric Barrier Discharge. Journal of Physics D: Applied Physics, 53, Article ID: 185202.
https://doi.org/10.1088/1361-6463/ab6ccf
[27]  Soliman, H.M. and Masoud, M.M. (1994) Plasma Sheath Axial Phase Dynamics in Coaxial Device. Physica Scripta, 50, 406-408.
https://doi.org/10.1088/0031-8949/50/4/012
[28]  Storozhev, D.A. and Kuratov, S.E. (2017) Numerical Simulation of the Kinetics of Dissociation and Ionization of Molecular Hydrogen in the Penning Discharge Plasma with the Use of the Reduced Kinetic Model. Journal of Physics: Conference Series, 815, Article ID: 012002.
https://doi.org/10.1088/1742-6596/815/1/012002
[29]  Press, A.F., Goeckner, M.J. and Overzet, L.J. (2019) Sub-rf Period Electrical Characterization of a Pulsed Capacitively Coupled Argon Plasma. Journal of Vacuum Science & Tech-nology B, 37, Article ID: 062926.
https://doi.org/10.1116/1.5132753
[30]  Zhang, Y.T., Wang, D.Z. and Kong, M.G. (2005) Two-Dimensional Sim-ulation of a Low-Current Dielectric Barrier Discharge in Atmospheric Helium. Journal of Applied Physics, 98, Article ID: 113308.
https://doi.org/10.1063/1.2140890
[31]  Wang, W.Z., Butterworth, T. and Bogaerts, A. (2021) Plasma Propagation in a Single Bead DBD Reactor at Different Dielectric Constants: Insights from Fluid Modelling. Journal of Physics D: Applied Physics, 54, Article ID: 214004.
https://doi.org/10.1088/1361-6463/abe8ff

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133