全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于EGO优化算法的乙醇偶合制备C4烯烃反应中催化剂的最佳工艺条件研究
Study on the Optimum Technological Conditions of Catalyst for the Synthesis of C4 Olefin Byethanol Coupling Based on EGO Optimization Algorithm

DOI: 10.12677/MOS.2023.122108, PP. 1144-1150

Keywords: C4烯烃,Co/SiO2-HAP催化剂,EGO优化算法,Kriging代理模型,数学模型;C4 Olefin, Co/SiO2-HAP Catalyst, EGO Optimization Algorithm, Kriging Proxy Model Mathematical Model

Full-Text   Cite this paper   Add to My Lib

Abstract:

随着现代科技的飞速发展,C4烯烃被广泛应用于化工产品及医药中间体的生产。能源供给呈现多元化态势,在众多新型能源中,乙醇是生产制备C4烯烃的理想原料,探索乙醇催化偶合制备C4烯烃的工艺条件具有重要的现实意义和经济价值。针对2021年高教社杯全国大学生数学建模竞赛B题的研究,基于给定的若干组实验数据,本文以乙醇为平台化合物,使用Co/SiO2-HAP作为催化剂,基于给定的若干组实验数据,构建Kriging代理模型,最后利用EGO优化算法,通过MATLAB编程数值计算,获得乙醇催化偶合制备C4烯烃的最佳工艺条件。而且可以利用本文构建的数学模型,通过优化计算获得最佳的实验方案,从而大量减少实验次数,节约成本。
With the rapid development of modern science and technology, C4 olefins are widely used in the production of chemical products and pharmaceutical intermediates. Energy supply presents a trend of diversification. Among many new energy sources, ethanol is the ideal raw material for the production and preparation of C4 olefin. It is of great practical significance and economic value to explore the technological conditions for the preparation of C4 olefin by ethanol catalytic coupling. Aiming at the research on question B of the National College Students’ mathematical modeling competition of the higher education society cup in 2021, based on the given groups of experimental data, In this paper, ethanol was used as platform compound and Co/SiO2-HAP catalyst was used as catalyst. Based on the given experimental data, Kriging proxy model was constructed. Finally, EGO optimization algorithm was used and numerical calculation was performed by MATLAB program-ming to obtain the optimal technological conditions for the preparation of C4 olefins by ethanol cat-alytic coupling. Moreover, the mathematical model constructed in this paper can be used to obtain the best experimental scheme through optimization calculation, thus greatly reducing the number of experiments and saving costs.

References

[1]  2021年高教社杯全国大学生数学建模竞赛题目B题[EB/OL].
http://www.mcm.edu.cn/, 2021-09-12.
[2]  姜启源, 谢金星, 叶俊. 数学建模(第五版) [M]. 北京: 高等教育出版社, 2018.
[3]  吕绍沛. 乙醇偶合制备丁醇即C4烯烃[D]: [硕士学位论文]. 大连: 大连理工大学, 2018: 2-49.
[4]  黄健. 基于遗传算法和非线性规划的设备预防维修周期优化模型[J]. 数学理论与应用, 2017, 37(2): 88-96.
[5]  王洁, 王波. 基于最小二乘法的GM(1,1)模型在我国蔬菜产量预测中的应用研究[J]. 数学理论与应用, 2016, 36(4): 116-124.
[6]  程远胜. 并行EGO算法研究及其应用[D]: [博士学位论文]. 武汉: 华中科技大学, 2018: 16-83.
[7]  何嫁梁. 基于Kriging代理模型的多目标优化策略及其在氧化反应中的应用[D]: [硕士学位论文]. 上海: 华东理工大学, 2012: 38-51.
[8]  柯贤斌. 关于Kriging模型的构造及其化化算法研究[D]: [硕士学位论文]. 西安: 西安电子科技大学, 2015: 1-16.
[9]  刘昕, 吴天祥, 赵群丽, 朱俊杰, 吴彩云. 基于Kriging代理模型对产不饱和脂肪酸的酒曲微生物混菌比例优化[J]. 酿酒科技, 2016(9): 23-27.
[10]  万安华. 一道2020年全国大学生数学竞赛题的多种推广[J]. 大学数学, 2021, 37(3): 99-104.
[11]  韩忠华. Kriging模型及代理优化算法研究进展[J]. 航空学报, 2016, 37(11): 3197-3225.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133