全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

科技创新绩效影响因素分析及预测
Analysis and Prediction of Factors Affecting Science and Technology Innovation Performance

DOI: 10.12677/MSE.2023.122013, PP. 127-135

Keywords: 科技创新绩效,数据分析与挖掘,支持向量机
Science and Technology Innovation Performance
, Data Analysis and Mining, Support Vector Machines

Full-Text   Cite this paper   Add to My Lib

Abstract:

结合数据分析和挖掘方法建立了一种理论模型,用于评价科技创新绩效。通过对科技创新绩效的众多相关的影响因素进行数据分析,采用Lasso回归方法识别科技创新绩效的关键影响因素,结合灰色预测方法、支持向量机预测模型,建立了科技创新绩效的评估预测模型。以历史数据为实证研究对象,拟合预测了科技创新绩效的期望值和未来发展趋势。
A theoretical model was established for evaluating STI performance by combining data analysis and mining methods. Through data analysis of numerous relevant influencing factors of STI performance, Lasso regression method was used to identify the key influencing factors of STI performance, and combined with gray prediction method and support vector machine prediction model, a prediction model for evaluating STI performance was established. Using historical data as the empirical research object, the expected value and future development trend of science and technology innovation performance were fitted and predicted.

References

[1]  张浩, 霍国庆, 汪明月, 等. 科技成果转化的战略绩效评价——基于国家科学技术进步奖成果的实证研究[J]. 科学学与科学技术管理, 2020, 41(8): 7-25.
[2]  Cooke. (1998) Regional Innovation Systems: The Role of Governances in a Globalized World. UCL Press, London.
[3]  韩宝国, 张良均. R语言商务数据分析实战[M]. 北京: 人民邮电出版社, 2019.
[4]  王彩明, 李健. 中国区域绿色创新绩效评价及其时空差异分析——基于2005-2015年的省际工业企业面板数据[J]. 科研管理, 2019, 40(6): 29-42.
https://doi.org/10.19571/j.cnki.1000-2995.2019.06.004
[5]  张家峰, 李佳楠, 陈红喜, 等. 长三角高校科研创新绩效评价及影响因素研究——基于DEA-Malmquist-Tobit模型[J]. 科技管理研究, 2020, 40(9): 80-87.
[6]  孙丽文, 李跃. 京津冀区域创新生态系统生态位适宜度评价[J]. 科技进步与对策, 2017, 34(4): 47-53.
[7]  Lee, J.-D. and Park, C. (2006) Research and Development Linkages in a National Innovation System: Factors Affecting Success and Failure in Korea. Technovation, 26, 1045-1054.
https://doi.org/10.1016/j.technovation.2005.09.004
[8]  柴玮, 申万, 毛亚林. 基于DEA的我国资源型企业科技创新绩效评价研究[J]. 科研管理, 2015, 36(10): 28-34.
https://doi.org/10.19571/j.cnki.1000-2995.2015.10.004
[9]  许敏, 王慧敏, 钱一奇. 高校科技创新绩效评价及协同创新机制研究——以长三角区域82所高校样本比较分析为例[J]. 中国高校科技, 2021(10): 44-49.
https://doi.org/10.16209/j.cnki.cust.2021.10.008
[10]  Teng, T.W. and Chen, J.Y. (2019) The Performance Space Measurement of Regional Innovation System Based on Neuropsychology. Cognitive Systems Research, 56, 159-166.
https://doi.org/10.1016/j.cogsys.2018.10.034

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133