全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于两类服务台批量服务、异步休假排队的P2P网络性能分析
Performance Analysis of P2P Networks Based on Two Types of Servers Bulk Service and Asynchronous Vacation Queueing Model

DOI: 10.12677/CSA.2023.133032, PP. 334-348

Keywords: P2P网络,异步休假,批量服务,两类服务台,社会最优策略
P2P Networks
, Asynchronous Vacation, Bulk Service, Two Types of Servers, Social Optimal Strategy

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了对P2P网络性能进行分析,解决P2P网络系统能耗过大的问题,本文将P2P网络中发出资源请求的节点抽象成顾客,提供服务的节点抽象成服务台,在经典排队模型的基础上引入两类服务台批量服务、异步休假策略建立服务台数变化的M/Md/c+k(0≤k≤d)排队模型。利用矩阵几何解方法求解出系统的稳态分布,进而推导出系统平均队长、平均等待时间等性能指标,并分析了系统不同状态下的能耗问题,提出纳什均衡和社会最优策略,为改善P2P网络能耗大的问题寻找合适参数。
In order to analyze the performance of P2P networks and solve the problem of excessive energy consumption of P2P network system. In this paper, the peers that resource requests in a P2P net-work are abstracted into customers and the peers that provide services are abstracted into servers. Based on the classical queueing model, two types of servers bulk service and asynchronous vacation strategies are introduced to establish the M/Md/c+k(0≤k≤d) queueing model. The steady-state distribution of the system is solved by using the matrix-geometric solution method, and then the performance indicators such as the average queue length and the average waiting time of the system are derived. This paper also focuses on the energy consumption of the system in different periods, and puts forward the Nash equilibrium and the social optimal strategy to find appropriate parameters to improve the problem of high energy consumption in P2P networks.

References

[1]  Qin, M., Chen, L., Zhao, N., et al. (2020) Computing and Relaying: Utilizing Mobile Edge Computing for P2P Commu-nications. IEEE Transactions on Vehicular Technology, 69, 1582-1594.
https://doi.org/10.1109/TVT.2019.2956996
[2]  张修如, 阳天保, 谭遥骋, 等. 基于P2P的多发送节点流媒体数据分派策略[J]. 计算机系统应用, 2007(6): 46-49.
[3]  Hales, D. (2004) From Selfish Nodes to Cooperative Net-works-Emergent Link-Based Incentives in Peer-to-Peer Networks. Fourth International Conference on Peer-to-Peer Computing, Zurich, 27-27 August 2004, 151-158.
https://doi.org/10.1109/PTP.2004.1334942
[4]  Guo, L. (2006) A Distributed Trust Model Based on Vector Space in P2P Networks. Journal of Computer Research & Development, 43, 1564-1570.
https://doi.org/10.1360/crad20060912
[5]  Jain, A. and Jain, M. (2017) Multi Server Machine Repair Problem with Unreliable Server and Two Types of Spares under Asynchronous Vacation Policy. International Journal of Mathematics in Operational Research, 10, 286-315.
https://doi.org/10.1504/IJMOR.2017.083187
[6]  Wang, J., Zhang, Y. and Zhang, Z. (2019) Strategic Joining in an M/M/K Queue with Asynchronous and Synchronous Multiple Vacations. Journal of the Operational Research Socie-ty, 72, 1-19.
https://doi.org/10.1080/01605682.2019.1644978
[7]  张宏波, 王红蔚, 史定华. 对一类批量服务工作休假排队的分析[J]. 应用数学学报, 2020, 43(5): 781-791.
[8]  Lee, Y. (2015) Discrete-Time Bulk Queueing System with Variable Service Capacity Depending on Previous Service time. Mathematical Problems in Engineering, 2015, 1-6.
https://doi.org/10.1155/2015/482179
[9]  Banerjee, A., Gupta, U. and Chakravarthy, S. (2015) Analysis of a Fi-nite-Buffer Bulk-Service Queue under Markovian Arrival Process with Batch-Size-Dependent Service. Computers & Operations Research, 60, 138-149.
https://doi.org/10.1016/j.cor.2015.02.012
[10]  Germs, R. and Foreest, N. (2013) Analysis of Finite-Buffer State-Dependent Bulk Queues. Journal, 35, 563-583.
https://doi.org/10.1007/s00291-012-0282-7
[11]  Ghimire, J., Mani, M., Crespi, N., et al. (2015) Delay and Capac-ity Analysis of Structured P2P Overlay for Lookup Service. Telecommunication Systems, 58, 33-54.
https://doi.org/10.1007/s11235-014-9872-9
[12]  Ferragut, A. and Paganini, F. (2015) Queueing Analysis of Peer-to-Peer Swarms: Stationary Distributions and Their Scaling Limits. Performance Evaluation, 93, 47-62.
https://doi.org/10.1016/j.peva.2015.08.003
[13]  Gray, W. and Scott, M. (1986) A Queueing Model with Bonus Service for Certain Customers. Applied Mathematical Modelling, 10, 241-245.
https://doi.org/10.1016/0307-904X(86)90052-1

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133