全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Tm:YLF谐振泵浦Ho:YAG主动调Q多波长激光器
Tm:YLF Resonantly Pumped Ho:YAG Active Q-Switched Internal Cavity Multi-Wavelength Laser

DOI: 10.12677/OE.2023.131003, PP. 21-28

Keywords: Ho:YAG,多波长,固体激光器
HO:YAG
, Mia-IR, Solid-State Laser

Full-Text   Cite this paper   Add to My Lib

Abstract:

中红外多波长固体激光器因其在不同领域的广泛应用而受到关注。本文基于此,搭建了Tm:YLF谐振泵浦Ho:YAG主动调Q内腔式固体激光器。选用掺杂浓度为2.5%的Ho:YAG作为激光增益介质,通过改变腔内损耗,调控反转粒子数比率,进而改变腔内振荡波长。研究表明,在调制频率为4 kHz、泵浦功率为8.492 W时,获得了最大输出功率为1.467 W,平均脉冲宽度为50 ns,对应的光光转化效率为17.3%,斜效率约为21%。在连续运转模式下,腔内仅存在单一2122.41 nm波长振荡,而在脉冲运转模式下,腔内振荡波长为2090 nm、2097 nm、2122 nm同步振荡。输出激光沿x方向和y方向的光束质量分别为1.64和1.65,输出模式为基横模。
Mid-infrared multi-wavelength solid-state lasers are of interest due to their wide range of applications in different fields. In this paper, a Tm:YLF resonantly pumped Ho:YAG actively Q-switched internal cavity solid-state laser is built based on this. Ho:YAG with a doping concentration of 2.5% is chosen as the laser gain medium, and the inversion particle number ratio is modulated by changing the intracavity loss, which in turn changes the intracavity oscillation wavelength. It is shown that a maximum output power of 1.467 W with an average pulse width of 50 ns is obtained at a modulation frequency of 4 kHz and a pump power of 8.492 W, corresponding to a photo-optical conversion efficiency of 17.3% and a slope efficiency of about 21%. In continuous wave operation mode, only a single 2122.41 nm wavelength oscillation is present in the cavity, while in pulsed wave operation mode, the cavity oscillates at 2090 nm, 2097 nm and 2122 nm simultaneously. The beam quality of the output laser is 1.64 and 1.65 in the x and y directions respectively, with the output mode being fundamental transverse mode.

References

[1]  Fei, L. and Zhang, S. (2007) The Discovery of Nanometer Fringes in Laser Self-Mixing Interference. Optics Communications, 273, 226-230.
https://doi.org/10.1016/j.optcom.2006.12.022
[2]  Tanoto, H., Teng, J.H., Wu, Q.Y., Sun, M., Chen, Z.N., Maier, S.A., et al. (2012) Greatly Enhanced Continuous-Wave Terahertz Emission by Nano-Electrodes in a Photoconductive Photomixer. Nature Photonics, 6, 121-126.
https://doi.org/10.1038/nphoton.2011.322
[3]  Ye, J., Tian, Z., Hu, Y., Wei, H., Li, Y., Zhao, Y., et al. (2021) Dual-Wavelength Wide Area Illumination Raman Difference Spectroscopy for Remote Detection of Chemicals. Applied Optics, 60, 3540-3548.
https://doi.org/10.1364/AO.422321
[4]  Wang, X.-Z., Wang, Z.-F., Bu, Y.-K., Liu, Z., Chen, L.-J., Cai, G.-X., et al. (2014) A 1064 nm, 1085 nm Dual-Wavelength Nd:YVO4 Laser Using Fabry-Perot Filters as Output Couplers. IEEE Photonics Technology Letters, 26, 1983-1985.
https://doi.org/10.1109/LPT.2014.2344114
[5]  Liu, Y., Sheng, Q., Zhong, K., Shi, W., Ding, X., Qiao, H., et al. (2019) Dual-Wavelength Intracavity Raman Laser Driven by a Coaxially Pumped Dual-Crystal Fundamental Laser. Optics Express, 27, 27797-27806.
https://doi.org/10.1364/OE.27.027797
[6]  Wang, Z., Liu, H., Wang, J., Lv, Y., Sang, Y., Lan, R., et al. (2009) Passively Q-Switched Dual-Wavelength Laser Output of LD-End-Pumped Ceramic Nd:YAG Laser. Optics Express, 17, 12076-12081.
https://doi.org/10.1364/OE.17.012076
[7]  Lin, Z., Wang, Y., Xu, B., Cheng, Y., Xu, H. and Cai, Z. (2015) Simultaneous Dual-Wavelength Lasing at 1047 and 1053 nm and Wavelength Tuning to 1072 nm in a Diode-Pumped a Cut Nd:LiYF4 Laser. Optical Engineering, 54, 126114.
https://doi.org/10.1117/1.OE.54.12.126114
[8]  Huang, Y.P., Cho, C.Y., Huang, Y.J. and Chen, Y.F. (2012) Orthogonally Polarized Dual-Wavelength Nd:LuVO4 Laser at 1086 nm and 1089 nm. Optics Express, 20, 5644-5651.
https://doi.org/10.1364/OE.20.005644
[9]  Zhao, T., Wang, F. and Shen, D.Y. (2015) High-Power Ho:YAG Laser Wing-Pumped by a Tm:Fiber Laser at 1933??nm. Applied Optics, 54, 1594-1597.
https://doi.org/10.1364/AO.54.001594
[10]  Chen, H., Shen, D., Zhang, J., Yang, H., Tang, D., Zhao, T., et al. (2011) In-Band Pumped Highly Efficient Ho:YAG Ceramic Laser with 21 W Output Power at 2097 nm. Optics Letter, 36, 1575-1577.
https://doi.org/10.1364/OL.36.001575
[11]  Wang, L., Gao, C., Gao, M. and Li, Y. (2013) Resonantly Pumped Monolithic Nonplanar Ho:YAG Ring Laser with High-Power Single-Frequency Laser Output at 2122 nm. Optics Ex-press, 21, 9541-9546.
https://doi.org/10.1364/OE.21.009541
[12]  Wang, L., Gao, C., Gao, M., Li, Y., Yue, F. and Liu, L. (2013) Sin-gle-Frequency and Dual-Wavelength Ho:YAG Nonplanar Ring Oscillator Resonantly Pumped by a Tm:YLF Laser. Optical Engineering, 53, 061603.
https://doi.org/10.1117/1.OE.53.6.061603
[13]  Ohta, K., Saito, H. and Obara, M. (1993) Spectroscopic Characterization of Tm3+:YVO4 Crystal as an Efficient Diode Pumped Laser Source near 2000 nm. Journal of Applied Physics, 73, 3149-3152.
https://doi.org/10.1063/1.353005

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133