全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

锯齿形光晶格合成理论与加磁场时冷原子能带结构
Theory of Sawtooth Optical Lattice Synthesis and the Energy Band Structure of Cold Atomic Is Added with Magnetic Field

DOI: 10.12677/OE.2023.131002, PP. 8-20

Keywords: 冷原子,光晶格,锯齿势
Cold Atom
, Optical Lattice, Sawtooth Potential

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文提出了一种合成锯齿形光晶格的理论,并且采用理论计算的方法探讨了冷原子在外加磁场的锯齿光晶格中的能带结构。通过对比无磁场情况,发现磁场会在其色散关系图中产生一个空洞。并且沿锯齿势方向出现与广义Kronig-Penney模型中发现的谱带相似的能带结构。
In this paper, a theory of synthetic sawtooth optical lattice is presented and the band structure of cold atoms in sawtooth optical lattice with applied magnetic field is discussed by theoretical calculation. By comparing the absence of magnetic field, it is found that the magnetic field will produce a hole in the dispersion diagram. Band structures similar to those found in the generalized Kronig-Penney model appear along the direction of sawtooth potential.

References

[1]  Greiner, M., Mandel, O., Esslinger, T., et al. (2002) Quantum Phase Transition from a Superfluid to a Mott Insulator in a Gas of Ultracold Atoms. Nature, 415, 39-44.
https://doi.org/10.1038/415039a
[2]  Giovanazzi, S. (2005) Hawking Radiation in Sonic Black Holes. Physical Review Letters, 94, 61302-61302.
https://doi.org/10.1103/PhysRevLett.94.061302
[3]  Zohar, E., Cirac, J.I. and Reznik, B.J.R. (2016) Quantum Simulations of Lattice Gauge Theories Using Ultracold Atoms in Optical Lattices. Reports on Progress in Physics, 79, 014401.
https://doi.org/10.1088/0034-4885/79/1/014401
[4]  Randeria, M. and Taylor, E. (2014) Crossover from Bar-deen-Cooper-Schrieffer to Bose-Einstein Condensation and the Unitary Fermi Gas. Annual Review of Condensed Matter Physics, 5, 209-232.
https://doi.org/10.1146/annurev-conmatphys-031113-133829
[5]  Zoller, P., Budich, et al. (2016) Topological Quantum Matter with Ultracold Gases in Optical Lattices. Nature Physics, 12, 639-645.
[6]  Reimann, P. (2002) Brownian Motors: Noisy Transport Far from Equilibrium. Physics Reports, 361, 57-265.
https://doi.org/10.1016/S0370-1573(01)00081-3
[7]  Salger, T., Kling, S., Hecking, T., et al. (2009) Directed Transport of Atoms in a Hamiltonian Quantum Ratchet. Science, 326, 1241-1243.
https://doi.org/10.1126/science.1179546
[8]  Yukawa, S., Tatara, G., Kikuchi, M., et al. (2000) Quantum Ratchet. Physica B: Condensed Matter, 284, 1896-1897.
https://doi.org/10.1016/S0921-4526(99)02982-8
[9]  Zhou, W.H., Wang, X.W., Gao, J., et al. (2021) Topologically Protecting Quantum Resources with Sawtooth Lattices. Optics Letters, 46, 1584-1587.
https://doi.org/10.1364/OL.418488
[10]  Berry, M.V. (1984) Quantal Phase Factors Accompanying Adiabatic Changes. Proceedings of the Royal Society of London, 392, 45-57.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133