|
2 μm工作波长下高非线性氮化硅槽波导研究
|
Abstract:
2 μm波段在光通信、光传感等领域拥有巨大前景,应用的蓬勃发展带来了与日俱增的器件需求,其中低损耗的氮化硅波导备受关注,但是其非线性效应较弱,限制了它在非线性领域的发展。本文利用非线性效应的全矢量模型和槽波导的有限元模场求解法,系统地研究了2 μm工作波长下氮化硅槽波导结构对其非线性效应和功率限制特性的影响。研究结果表明,氮化硅槽波导的氮化硅条宽度、槽宽度和波导高度均影响其非线性效应和功率限制特性。通过结构参数优化,可同时实现高非线性系数和高功率限制,分别为4.36/W/m和16.4%。本文的工作可为2 μm波段的波导器件提供一个有力候选,为氮化硅槽波导在2 μm波段的非线性应用提供了理论基础。
The 2 μm band has great prospects in optical communication, optical sensing and other fields. With the rapid development of applications, the demand for devices is increasing day by day, among which the low loss silicon ni-tride waveguide is attracting more and more attention. But its nonlinear effect is weak, which limits its development in nonlinear field. In this paper, the power confinement factor, effective mode area, and nonlinear coefficient of silicon nitride slot waveguides at 2 μm operating wavelength are sys-tematically studied by means of the full vector model of nonlinear effect and the finite element method. The results show that the width of the silicon nitride slot waveguide, the width of the slot and the height of the waveguide all affect the power confinement factor, the effective mode area, and the nonlinear coefficient. By optimizing the structure, the structure can achieve high nonlinear coefficient and high power confinement factor of 4.36/W/m and 16.4%, respectively. The work in this paper provides a strong candidate for waveguide devices in 2 μm band, and provides a theoret-ical basis for the nonlinear application of silicon nitride slot waveguide in 2 μm band.
[1] | Zhang, H., Kavanagh, N., Li Z., et al. (2015) 100 Gbit/s WDM Transmission at 2 μm: Transmission Studies in Both Low-Loss Hollow Core Photonic Bandgap Fiber and Solid Core Fiber. Optics Express, 23, 4946-4951.
https://doi.org/10.1364/OE.23.004946 |
[2] | Ruan, Z., Shen, L., Zheng, S., et al. (2018) Subwavelength Grating slot (SWGS) Waveguide at 2 μm for Chip-Scale Data Transmission. Nanophotonics, 7, 865-871. https://doi.org/10.1515/nanoph-2017-0090 |
[3] | 王兴军, 苏昭棠, 周治平. 硅基光电子学的最新进展[J]. 中国科学: 物理学?力学?天文学, 2015, 45(1): 1-31. |
[4] | Xiang, C., Jin, W., Bowers, J.E. (2022) Silicon Nitride Passive and Active Photonic Integrated Circuits: Trends and Prospects. Photonics Research, 10, A82-A96. https://doi.org/10.1364/PRJ.452936 |
[5] | Bristow, A.D., Rotenberg, N. and Van, D.H.M. (2007) Two-Photon Absorption and Kerr Coefficients of Silicon for 850-2200. Applied Physics Letters, 90, Article No. 191104. https://doi.org/10.1063/1.2737359 |
[6] | Wang, Z., Liu, H., Huang, N., et al. (2012) Efficient Terahertz-Wave Gen-eration via Four-Wave Mixing in Silicon Membrane Waveguides. Optics Express, 20, 8920-8928. https://doi.org/10.1364/OE.20.008920 |
[7] | Koompai, N., Chaisakul, P., Limsuwan, P., Le Roux, X., Vivien, L. and Marris-Morini, D. (2021) Design and Simulation Investigation of Si3N4 Photonics Circuits for Wideband On-Chip Optical Gas Sensing around 2 μm Optical Wavelength. Sensors, 21, Article No. 2513. https://doi.org/10.3390/s21072513 |
[8] | 郑又彬. 基于功能聚合物的氮化硅波导生化传感器研究[D]: [硕士学位论文]. 成都: 电子科技大学, 2021. |
[9] | Michelle, S.F., Ivan, B., Benjamin, B. and Fran?ois, D. (2011) Dense Small Molecule Assemblies for Third-Order Nonlinear Optics: DDMEBT. CLEO: 2011—Laser Applications to Pho-tonic Applications, Baltimore, Maryland United States, 1-6 May 2011. |
[10] | Tu, Z., Jin, Q., Li, X. and Gao, S. (2018) Mid-Infrared Nonlinear Silicon Hybrid Waveguide with High Figure of Merit. Journal of the Optical Society of America B, 35, 1772-1779. https://doi.org/10.1364/JOSAB.35.001772 |
[11] | Afshar, V.S. and Monro, T.M. (2009) A Full Vectorial Model for Pulse Propagation in Emerging Waveguides with Subwavelength Structures Part I: Kerr Nonlineari-ty. Optics Express, 17, 2298-2318.
https://doi.org/10.1364/OE.17.002298 |