全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于分子动力学方法模拟聚合物稀溶液喷泉流动
Simulation of Fountain Flow Based on Molecular Dynamics Method

DOI: 10.12677/MOS.2023.122100, PP. 1058-1068

Keywords: 喷泉效应,FENE哑铃模型,流变,流动前沿;Fountain Effect, FENE Dumbbell Model, Rheology, Flow Front

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文基于分子动力学原理利用FENE哑铃模型对聚合物稀溶液流动前沿喷泉效应开展数值模拟。利用欧拉法求解力学模型在简单剪切流场下的构型方程和哑铃分子的位形方程,获取示踪流线和流动前沿哑铃分布,计算应力场,分析流变演化规律,研究温度和剪切速率等参数对该模型的影响,分析FENE哑铃分子模型模拟喷泉效应的有效性。结果表明,在喷泉效应的作用下,随着剪切速率的升高哑铃分子的伸展变大,流动前沿聚合物应力会出现应力过冲,随后趋于稳定的复杂变化,哑铃分子沿喷泉流线取向。
In this paper, numerical simulations of the fountain effect on the flow front of polymer dilute solu-tions are carried out based on molecular dynamics principles and the FENE dumbbell model. The Euler method is used to solve the constitutive equations of the mechanical model for the simple shear flow field and the dislocation equations of the dumbbell molecules, and subsequently obtain the tracer flow lines and the dumbbell distribution of the flow front. The results are used to calcu-late the stress field, analyze the rheological evolution law, study the effect of temperature and shear rate and other parameters on the model and analyze the effectiveness of the FENE dumbbell molec-ular model for the fountain effect. The study shows that due to the fountain effect, the dumbbell molecules stretch more with increasing shear rate, the polymer stress at the flow front will show a complex change of stress overshoot and then stabilize, and the dumbbell molecules are oriented along the fountain flow line.

References

[1]  Rose, W. (1961) Fluid-Fluid Interfaces in Steady Motion. Nature, 191, 242-243.
https://doi.org/10.1038/191242a0
[2]  Mitsoulis, E. (2010) Fountain Flow Revisited: The Effect of Various Fluid Mechanics Parameters. AIChE Journal, 56, 1147-1162.
https://doi.org/10.1002/aic.12038
[3]  欧阳洁, 文艳, 周文. 短纤维增强熔体三维充模模拟及制品性能预测[J]. 化工学报, 2013, 64(9): 3102-3109.
[4]  Bechara, A., Kollert, S., Onken, J., et al. (2014) Effect of Fountain Flow on Fiber Orientation and Distribution in Fiber Filled Poly-mers During Mold Filling. Proceedings of the 72nd Annual Technical Conference of the Society of Plastic Engineers (ANTEC), Las Vegas, 28-30 April 2014.
[5]  Papathanasiou, T.D., Kuehnert, I. and Polychronopoulos, N.D. (2022) Flow-Induced Alignment in Injection Molding of Fiber-Reinforced Polymer Composites. In: Papathanasiou, T.D. and Bénard, A., Eds., Flow-Induced Alignment in Composite Materials, Woodhead Publishing, Sawston, 123-185.
https://doi.org/10.1016/B978-0-12-818574-2.00001-4
[6]  Liu, Q.S., Liu, Y.Q., Jiang, C.T. and Wang, X.H. (2019) Numerical Simulation of Viscoelastic Flows During Injection Mold Filling Based on Rolie–Poly Model. Journal of Non-Newtonian Fluid Mechanics, 263, 140-153.
https://doi.org/10.1016/j.jnnfm.2018.12.002
[7]  Borzenko, E.I., Frolov, O.Y. and Shrager, G.R. (2014) Fountain Viscous Fluid Flow During Filling a Channel When Taking Dissipative Warming Into Account. Fluid Dynamics, 49, 37-45.
https://doi.org/10.1134/S0015462814010062
[8]  Borzenko, E.I., Frolov, O.Y. and Shrager, G.R. (2014) Fountain Nonisothermal Flow of a Viscous Liquid during the Filling of a Circular Tube. Theoretical Foundations of Chemical Engineering, 48, 824-831.
https://doi.org/10.1134/S0040579514060013
[9]  Borzenko, E.I., Frolov, O.Y. and Shrager, G.R. (2019) Kine-matics of the Fountain Flow during Pipe Filling with a Power-Law Fluid. AIChE Journal, 65, 850-858.
https://doi.org/10.1002/aic.16470
[10]  Smit, T.M., Hulsen, M.A., Bogaerds, A.C.B. and Anderson, P.D. (2016) Predicting the Fountain Flow Instability: From Material Properties and Processing Conditions. Proceedings of the Mate Poster Award 2016: 21st Annual Poster Contest, Eindhoven, 1 January 2016-31 December 2016, 1.
https://research.tue.nl/en/publications/predicting-the-fountain-flow-instability-from-material-properties
[11]  Jong, W.-R., Hwang, S.-S., Wu, C.-C., et al. (2018) Using a Visualization Mold to Discuss the Influence of Gas Counter Pressure and Mold Temperature on the Fountain Flow Effect. International Polymer Processing, 33, 255-267.
https://doi.org/10.3139/217.3496
[12]  Veltmaat, L., Mehrens, F., Endres, H.-J., Kuhnert, J. and Suchde, P. (2022) Mesh-Free Simulations of Injection Molding Processes. Physics of Fluids, 34, Article ID: 033102.
https://doi.org/10.1063/5.0085049
[13]  Ren, M., Gu, J., Li, Z., Ruan, S. and Shen, C. (2021) Simulation of Poly-mer Melt Injection Molding Filling Flow Based on an Improved SPH Method with Modified Low-Dissipation Riemann Solver. Macromolecular Theory and Simulations, 31, Article ID: 2100029.
https://doi.org/10.1002/mats.202100029
[14]  闵志宇, 曹伟, 申长雨, 张春杰. FENE珠-簧链聚合物分子模型流变性质Brown动力学模拟[J]. 高分子材料科学与工程, 2009, 25(2): 171-174.
[15]  张小华, 欧阳洁, 孔倩. 聚合物流动的多尺度模拟[J]. 化工学报, 2007, 58(8): 1897-1904.
[16]  Somasi, M., Khomami, B., Woo, N.J., Hur, J.S. and Shaqfeh, E.S.G. (2002) Brownian Dynamics Simulations of Bead-Rod and Bead-Spring Chains: Numerical Algo-rithms and Coarse-Graining Issues. Journal of Non-Newtonian Fluid Mechanics, 108, 227-255.
https://doi.org/10.1016/S0377-0257(02)00132-5
[17]  方建农, 范西俊. 哑铃式聚合物分子模型流变性质的Brown动力学模拟[J]. 力学学报, 1997(3): 94-99.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133