|
HSANet:混合型自我注意力网络识别微整容人脸方法
|
Abstract:
微整容给在日常生产中给人脸识别技术带来了新的挑战,因人脸特征变化较大导致对原人脸正确识别率较低,针对现象,该实验提出了一种混合型自我注意力块结构,用于识别面部特征变化的人脸,为此自制了26类微整容小样本图片数据集。将自我注意力融合到残差网络的瓶颈块中,提高了混合型自我注意力块对图片各区域特征的捕获能力,在对小样本微整容数据集的实验表明,该实验提出的混合型自我注意力网络有较高的正确识别率:89.70%,相比ResNet50正确识别率提高了2.65%,改进连接的混合型自我注意力模型比未改进连接的混合型自我注意力模型正确识别率提高了1.12%,网络性能也有所提升。
Due to the large changes in facial features, the correct recognition rate of the original face is low. In view of the phenomenon, this experiment proposed a hybrid self-attention block structure for rec-ognizing faces with facial features changes. For this reason, 26 kinds of micro-plastic surgery small sample image data sets were made by ourselves. Integrating self-attention into the bottleneck block of the residual network improves the ability of the hybrid self-attention block to capture the features of each region of the image. The experiment on the small sample micro-plastic data sets shows that the hybrid self-attention network proposed in this experiment has a higher correct recognition rate: 89.70%, the correct recognition rate increased by 2.65% compared with ResNet50, and the correct recognition rate of the hybrid selfattention model with improved connection increased by 1.12% compared with the hybrid self-attention model without improved connection, and the net-work performance was also improved.
[1] | 苏丽, 孙雨鑫, 苑守正. 基于深度学习的实例分割研究综述[J]. 智能系统学报, 2021, 17(1): 16-31. |
[2] | 赵宣栋, 陈曦. 卷积神经网络在表情识别上的研究综述[J]. 计算机时代, 2022(4): 1-4. |
[3] | He, K., Zhang, X., Ren, S. and Sun, J. (2016) Deep Residual Learning for Image Recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, 27-30 June 2016, 770-778.
https://doi.org/10.1109/CVPR.2016.90 |
[4] | 张文秀, 朱振才, 张永合, 等. 基于残差块和注意力机制的细胞图像分割方法[J]. 光学学报, 2020, 40(17): 70-77. |
[5] | 王鸣展, 冀俊忠, 贾奥哲, 张晓丹. 基于跨尺度特征融合自注意力的图像描述方法[J]. 计算机科学, 2022, 49(10): 191-197. |
[6] | Luong, T., Pham, H. and Manning, C.D. (2015) Effective Approaches to Attention-Based Neural Machine Translation. Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, Lisbon, 17-21 September 2015, 1412-1421. https://doi.org/10.18653/v1/D15-1166 |
[7] | 李翔, 张涛, 张哲, 等. Transformer在计算机视觉领域的研究综述[J]. 计算机工程与应用, 2023, 59(1): 1-14.
http://kns.cnki.net/kcms/detail/11.2127.TP.20221009.1217.003.html |
[8] | Zhang, H., Wu, C., Zhang, Z., et al. (2022) ResNeSt: Split-Attention Networks. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), New Orleans, 19-20 June 2022, 2735-2745.
https://doi.org/10.1109/CVPRW56347.2022.00309 |
[9] | Wang, H., Zhu, Y., Green, B., Adam, H., Yuille, A. and Chen, LC. (2020) Axial-DeepLab: Stand-Alone Axial-Attention for Panoptic Segmentation. In: Vedaldi, A., Bischof, H., Brox, T. and Frahm, JM., Eds., Computer Vision—ECCV 2020. Lecture Notes in Computer Science, Vol. 12349, Springer, Cham, 108-126. https://doi.org/10.1007/978-3-030-58548-8_7 |
[10] | Bello, I., Zoph, B., Vaswani, A. and Shlens, J. (2019) Attention Augmented Convolutional Networks. 2019 IEEE/CVF International Conference on Comput-er Vision (ICCV), Seoul, 27 October-2 November 2019, 3285-3294.
https://doi.org/10.1109/ICCV.2019.00338 |
[11] | Srinivas, A., Lin, T.-Y., Parmar, N., et al. (2021) Bottleneck Transformers for Visual Recognition. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, 20-25 June 2021, 16514-16524.
https://doi.org/10.1109/CVPR46437.2021.01625 |
[12] | 张膑, 张运杰, 白明明. 结合Shortcut Connections结构的卷积稀疏编码图像去噪算法[J]. 科学技术与工程, 2021, 21(26): 11253-11262. |
[13] | 刘成攀, 吴斌, 杨壮. 基于联合损失和恒等映射的动态人脸识别[J]. 传感器与微系统, 2021, 40(9): 153-156. |
[14] | 王凤鸽. 基于轻量化与多尺度注意力融合的图像分类[D]: [硕士学位论文]. 西安: 西安电子科技大学, 2021.
https://doi.org/10.27389/d.cnki.gxadu.2021.002338 |
[15] | 李欣栩. 基于深度学习的评论文本情感分析[D]: [硕士学位论文]. 南京: 南京信息工程大学, 2021.
https://doi.org/10.27248/d.cnki.gnjqc.2021.000497 |
[16] | 刘晋, 邓洪敏, 徐泽林, 杨洋. 面向目标识别的轻量化混合卷积神经网络[J]. 计算机应用, 2021, 41(S2): 5-12. |
[17] | 赵朗月, 吴一全. 基于机器视觉的表面缺陷检测方法研究进展[J]. 仪器仪表学报, 2022, 43(1): 198-219. |