全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

MOF/COF复合材料合成与应用研究进展
Research Progress on Synthesis and Application of MOF/COF Composites

DOI: 10.12677/MS.2023.133013, PP. 103-110

Keywords: 金属有机骨架,共价有机骨架,复合材料,合成策略,应用
Metal Organic Frameworks
, Covalent Organic Frameworks, Composites, Synthesis Strategies, Applications

Full-Text   Cite this paper   Add to My Lib

Abstract:

金属有机骨架材料(MOF)和共价有机骨架材料(COF)因结构易调控、具有较大的比表面积和高孔隙率等优点逐渐成为材料研究领域的热点。但MOF和COF自身仍存在不足,将不同类型的MOF和COF材料进行有效复合,不仅可以保持各自的优势,还可以解决各自存在的不足,在各种应用中表现出优异的潜力。因此,基于MOF/COF的复合材料得到了越来越多的关注和快速发展。本文主要论述了MOF/COF复合材料的合成方法及其在吸附和分离、光催化、传感和储能领域的应用。
Metal organic frameworks (MOF) and covalent organic frameworks (COF) have gradually become hot spots in the field of materials research due to the advantages of easy structural adjustment, large specific surface area and high porosity. However, MOF and COF still have their own shortcomings, and the effective compounding of different types of MOF and COF materials can not only maintain their re-spective advantages, but also solve their respective shortcomings. The composites have shown ex-cellent potential in various applications. Therefore, MOF/COF composites have received more and more attention and rapid development. In this paper, the synthetic strategies of MOF/COF compo-sites and their applications in adsorption and separation, photocatalysis, sensing and energy stor-age are discussed.

References

[1]  Wu, Q., Luan, H. and Xiao, F. (2022) Theoretical Design for Zeolite Synthesis. Science China—Chemistry, 65, 1683-1690.
https://doi.org/10.1007/s11426-022-1307-5
[2]  Tian, Y. and Zhu, G. (2020) Porous Aromatic Frameworks (PAFs). Chemical Reviews, 120, 8934-8986.
https://doi.org/10.1021/acs.chemrev.9b00687
[3]  Chen, J., Abazari, R., Adegoke, K.A., et al. (2022) Met-al-Organic Frameworks and Derived Materials as Photocatalysts for Water Splitting and Carbon Dioxide Reduction. Co-ordination Chemistry Reviews, 469, Article ID: 214664.
https://doi.org/10.1016/j.ccr.2022.214664
[4]  Geng, K., He, T., Liu, R., et al. (2020) Covalent Organic Frame-works: Design, Synthesis, and Functions. Chemical Reviews, 120, 8814-8933.
https://doi.org/10.1021/acs.chemrev.9b00550
[5]  Ebadi Amooghin, A., Sanaeepur, H., Luque, R., et al. (2022) Fluorinated Metal-Organic Frameworks for Gas Separation. Chemical Society Reviews, 51, 7427-7508.
https://doi.org/10.1039/D2CS00442A
[6]  Wang, Y., Lv, H., Grape, E.S., et al. (2021) A Tunable Multivariate Metal-Organic Framework as a Platform for Designing Photocatalysts. Journal of the American Chemical Society, 143, 6333-6338.
https://doi.org/10.1021/jacs.1c01764
[7]  Li, J., Jing, X., Li, Q., et al. (2020) Bulk COFs and COF Nanosheets for Electrochemical Energy Storage and Conversion. Chemical Society Reviews, 49, 3565-3604.
https://doi.org/10.1039/D0CS00017E
[8]  Ma, X., Kang, J., Wu, Y., et al. (2022) Recent Advances in Met-al/Covalent Organic Framework-Based Materials for Photoelectrochemical Sensing Applications. Trac-Trends in Analyt-ical Chemistry, 157, Article ID: 116793.
https://doi.org/10.1016/j.trac.2022.116793
[9]  Song, Y., Sun, Q., Aguila, B., et al. (2019) Opportunities of Cova-lent Organic Frameworks for Advanced Applications. Advanced Science, 6, Article ID: 1801410.
https://doi.org/10.1002/advs.201801410
[10]  Yuan, S., Feng, L., Wang, K., et al. (2018) Stable Metal-Organic Frameworks: Design, Synthesis, and Applications. Advanced Materials, 30, Article ID: 1704303.
https://doi.org/10.1002/adma.201704303
[11]  Chen, X., Geng, K., Liu, R., et al. (2020) Covalent Organic Frame-works: Chemical Approaches to Designer Structures and Built-In Functions. Angewandte Chemie-International Edition, 59, 5050-5091.
https://doi.org/10.1002/anie.201904291
[12]  Ding, M., Cai, X. and Jiang, H. (2019) Improving MOF Stability: Approaches and Applications. Chemical Science, 10, 10209-10230.
https://doi.org/10.1039/C9SC03916C
[13]  Deng, Y., Wang, Y., Xiao, X., et al. (2022) Progress in Hybridization of Covalent Organic Frameworks and Metal-Organic Frameworks. Small, 18, Article ID: 2202928.
https://doi.org/10.1002/smll.202202928
[14]  Li, Y., Karimi, M., Gong, Y., et al. (2021) Integration of Met-al-Organic Frameworks and Covalent Organic Frameworks: Design, Synthesis, and Applications. Matter, 4, 2230-2265.
https://doi.org/10.1016/j.matt.2021.03.022
[15]  Chen, Z., Li, X., Yang, C., et al. (2021) Hybrid Porous Crystalline Materials from Metal Organic Frameworks and Covalent Organic Frameworks. Advanced Science, 8, Article ID: 2101883.
https://doi.org/10.1002/advs.202101883
[16]  Zhang, F., Sheng, J., Yang, Z., et al. (2018) Rational De-sign of MOF/COF Hybrid Materials for Photocatalytic H2 Evolution in the Presence of Sacrificial Electron Donors. An-gewandte Chemie-International Edition, 57, 12106-12110.
https://doi.org/10.1002/anie.201806862
[17]  Liu, X., Hu, M., Wang, M., et al. (2019) Novel Nanoarchitecture of Co-MOF-on-TPN-COF Hybrid: Ultralowly Sensitive Bioplatform of Electrochemical Aptasensor toward Ampicillin. Biosensors & Bioelectronics, 123, 59-68.
https://doi.org/10.1016/j.bios.2018.09.089
[18]  Sun, W., Tang, X., Yang, Q., et al. (2019) Coordination-Induced Interlinked Covalent- and Metal-Organic-Framework Hybrids for Enhanced Lithium Storage. Advanced Materials, 31, Article ID: 1903176.
https://doi.org/10.1002/adma.201903176
[19]  Li, F., Wang, D., Xing, Q., et al. (2019) Design and Syntheses of MOF/COF Hybrid Materials via Postsynthetic Covalent Modification: An Efficient Strategy to Boost the Visi-ble-Light-Driven Photocatalytic Performance. Applied Catalysis B-Environmental, 243, 621-628.
https://doi.org/10.1016/j.apcatb.2018.10.043
[20]  Cai, M., Li, Y., Liu, Q., et al. (2019) One-Step Construction of Hydrophobic MOFs@COFs Core-Shell Composites for Heterogeneous Selective Catalysis. Advanced Science, 6, Article ID: 1802365.
https://doi.org/10.1002/advs.201802365
[21]  Chen, Y., Yang, D., Shi, B., et al. (2020) In Situ Con-struction of Hydrazone-Linked COF-Based Core-Shell Hetero-Frameworks for Enhanced Photocatalytic Hydrogen Evo-lution. Journal of Materials Chemistry A, 8, 7724-7732.
https://doi.org/10.1039/D0TA00901F
[22]  Lu, G., Huang, X., Li, Y., et al. (2020) Covalently Integrated Core-Shell MOF@COF Hybrids as Efficient Visible- Light-Driven Photocatalysts for Selective Oxidation of Alcohols. Journal of Energy Chemistry, 43, 8-15.
https://doi.org/10.1016/j.jechem.2019.07.014
[23]  Liang, F., Wang, K., Lv, X., et al. (2020) Modular Total Synthe-sis in Reticular Chemistry. Journal of the American Chemical Society, 142, 3069-3076.
https://doi.org/10.1021/jacs.9b12408
[24]  Firoozi, M., Rafiee, Z. and Dashtian, K. (2020) New MOF/COF Hybrid as a Robust Adsorbent for Simultaneous Removal of Auramine O and Rhodamine B Dyes. Acs Omega, 5, 9420-9428.
https://doi.org/10.1021/acsomega.0c00539
[25]  Das, S., Ben, T., Qiu, S., et al. (2020) Two-Dimensional COF-Three-Dimensional MOF Dual-Layer Membranes with Unprecedentedly High H2/CO2 Selectivity and Ultrahigh Gas Permeabilities. ACS Applied Materials & Interfaces, 12, 52899-52907.
https://doi.org/10.1021/acsami.0c17794
[26]  Wang, Y., Yang, Q., Yi, F., et al. (2021) NH2-UiO-66 Coated with Two-Dimensional Covalent Organic Frameworks: High Stability and Photocatalytic Activity. ACS Applied Materials & Interfaces, 13, 29916-29925.
https://doi.org/10.1021/acsami.1c06008
[27]  Niu, Q., Dong, S., Tian, J., et al. (2022) Rational Design of Novel COF/MOF S-Scheme Heterojunction Photocatalyst for Boosting CO2 Reduction at Gas-Solid Interface. ACS Applied Materials & Interfaces, 14, 24299-24308.
https://doi.org/10.1021/acsami.2c02439
[28]  Chen, C., Xiong, Y., Zhong, X., et al. (2022) Enhancing Photocata-lytic Hydrogen Production via the Construction of Robust Multivariate Ti-MOF/COF Composites. Angewandte Chemie-International Edition, 61, Article ID: 2114071.
https://doi.org/10.1002/anie.202114071
[29]  Wang, J., Wang, L., Wang, Y., et al. (2022) Covalently Connected Core-Shell NH2-UiO-66@Br-COFs Hybrid Materials for CO2 Capture and I2 Vapor Adsorption. Chemical Engineering Journal, 438, Article ID: 135555.
https://doi.org/10.1016/j.cej.2022.135555
[30]  Wang, J., Dai, Z., Wang, L., et al. (2023) A Z-Scheme Heterojunc-tion of Porphyrin-Based Core-Shell Zr-MOF@Pro- COF-Br Hybrid Materials for Efficient Visible-Light-Driven CO2 Reduction. Journal of Materials Chemistry A, 11, 2023-2030.
https://doi.org/10.1039/D2TA08333G
[31]  Peng, Y., Zhao, M., Chen, B., et al. (2018) Hybridization of MOFs and COFs: A New Strategy for Construction of MOF@COF Core-Shell Hybrid Materials. Advanced Materials, 30, Article ID: 1705454.
https://doi.org/10.1002/adma.201705454
[32]  Wadhawan, S., Jain, A., Nayyar, J., et al. (2020) Role of Nano-materials as Adsorbents in Heavy Metal Ion Removal from Waste Water: A Review. Journal of Water Process Engi-neering, 33, Article ID: 101038.
https://doi.org/10.1016/j.jwpe.2019.101038
[33]  Sholl, D. and Lively, R. (2016) Seven Chemical Separations to Change the World. Nature, 532, 435-437.
https://doi.org/10.1038/532435a
[34]  Li, W., Shi, W., Hu, Z., et al. (2020) Fabrication of Magnetic Fe3O4@metal Organic framework@covalent Organic Framework Composite and Its Selective Separation of Trace Copper. Applied Surface Science, 530, Article ID: 147254.
https://doi.org/10.1016/j.apsusc.2020.147254
[35]  Koros, W. and Zhang, C. (2017) Materials for Next-Generation Molecularly Selective Synthetic Membranes. Nature Materials, 16, 289-297.
https://doi.org/10.1038/nmat4805
[36]  Garzon-Tovar, L., Perez-Carvajal, J., Yazdi, A., et al. (2019) A MOF@COF Composite with Enhanced Uptake through Interfacial Pore Generation. Angewandte Chemie-International Edition, 58, 9512-9516.
https://doi.org/10.1002/anie.201904766
[37]  Zhang, F., Wang, X., Liu, H., et al. (2019) Recent Advances and Ap-plications of Semiconductor Photocatalytic Technology. Applied Sciences-Basel, 9, 2489.
https://doi.org/10.3390/app9122489
[38]  Liu, J., Ma, N., Wu, W., et al. (2020) Recent Progress on Photocatalytic Heterostructures with Full Solar Spectral Responses. Chemical Engineering Journal, 393, Article ID: 124719.
https://doi.org/10.1016/j.cej.2020.124719
[39]  Li, Z., Guo, J., Wan, Y., et al. (2022) Combining Metal-Organic Frameworks (MOFs) and Covalent-Organic Frameworks (COFs): Emerging Opportunities for New Materials and Ap-plications. Nano Research, 15, 3514-3532.
https://doi.org/10.1007/s12274-021-3980-0
[40]  Gong, E., Ali, S., Hiragond, C.B., et al. (2022) Solar Fuels: Re-search and Development Strategies to Accelerate Photocatalytic CO2 Conversion into Hydrocarbon Fuels. Energy & En-vironmental Science, 15, 880-937.
https://doi.org/10.1039/D1EE02714J
[41]  Wang, L., Mao, J., Huang, G., et al. (2022) Configuration of Het-ero-Framework via Integrating MOF and Triazine- Containing COF for Charge-Transfer Promotion in Photocatalytic CO2 Reduction. Chemical Engineering Journal, 446, Article ID: 137011.
https://doi.org/10.1016/j.cej.2022.137011
[42]  Tajik, S., Beitollahi, H., Nejad, F.G., et al. (2021) Recent Develop-ments in Polymer Nanocomposite-Based Electrochemical Sensors for Detecting Environmental Pollutants. Industrial & Engineering Chemistry Research, 60, 1112- 1136.
https://doi.org/10.1021/acs.iecr.0c04952
[43]  Chen, W., Liu, S., Fu, Y., et al. (2022) Recent Advances in Photoelectrocatalysis for Environmental Applications: Sensing, Pollutants Re-moval and Microbial Inactivation. Coordination Chemistry Reviews, 454, Article ID: 214341.
https://doi.org/10.1016/j.ccr.2021.214341
[44]  Yuan, R., Li, H. and He, H. (2021) Recent Advances in Met-al/Covalent Organic Framework-Based Electrochemical Aptasensors for Biosensing Applications. Dalton Transactions, 50, 14091-14104.
https://doi.org/10.1039/D1DT02360H
[45]  Zhou, N., Ma, Y., Hu, B., et al. (2019) Construction of Ce-MOF@COF Hybrid Nanostructure: Label-Free Aptasensor for the Ultrasensitive Detection of Oxytetracycline Resi-dues in Aqueous Solution Environments. Biosensors & Bioelectronics, 127, 92-100.
https://doi.org/10.1016/j.bios.2018.12.024
[46]  Cui, X., Dong, H., Chen, S., et al. (2021) Progress and Perspective of Metal- and Covalent-Organic Frameworks and their Derivatives for Lithium-Ion Batteries. Batteries & Supercaps, 4, 72-97.
https://doi.org/10.1002/batt.202000094
[47]  Wang, S., Guo, Y., Wang, F., et al. (2022) Research Progress on Metal and Covalent Organic Framework-Based Materials for High-Performance Supercapacitors. New Carbon Mate-rials, 37, 109-132.
https://doi.org/10.1016/S1872-5805(22)60586-9
[48]  Cui, B. and Fu, G. (2022) Process of Metal-Organic Framework (MOF)/Covalent-Organic Framework (COF) Hybrids- Based Derivatives and Their Applications on Energy Transfer and Storage. Nanoscale, 14, 1679-1699.
https://doi.org/10.1039/D1NR07614K
[49]  Peng, H., Raya, J., Richard, F., et al. (2020) Synthesis of Robust MOFs@COFs Porous Hybrid Materials via an Aza- Diels-Alder Reaction: Towards High-Performance Supercapacitor Materials. Angewandte Chemie-International Edition, 59, 19602-19609.
https://doi.org/10.1002/anie.202008408

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133