全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

制动缸活塞行程对列车纵向动力学性能影响仿真研究
Simulation Research on Influence of Piston Stroke of Brake Cylinder on Longitudinal Dynamic Performance of Train

DOI: 10.12677/OJTT.2023.122015, PP. 120-131

Keywords: 重载列车,制动缸活塞行程,制动距离,车钩力
Heavy Haul Train
, Piston Stroke of Brake Cylinder, Braking Distance, Coupler Force

Full-Text   Cite this paper   Add to My Lib

Abstract:

为探寻制动缸活塞行程对列车纵向动力学性能的影响,本文采用列车空气制动和纵向动力学联合仿真系统研究制动缸活塞行程对2万t重载列车的制动能力与纵向力等动力学性能的影响。结果表明,相同空气制动减压量下,制动缸活塞行程越大,列车制动能力越弱;空气减压量越大,活塞行程对列车制动能力的影响越小;活塞行程由145 mm增大到190 mm时,减压50 kPa下制动距离相差最大约48.3%,紧急制动下制动距离相差最大约4.9%。从车钩力来看,相同空气制动减压量下,制动缸活塞行程越大,列车产生的最大压钩力越小;随着减压量增大,活塞行程对列车最大压钩力的影响总体呈减小趋势;减压50 kPa下最大压钩力相差最大约34.8%,而常用全制动与紧急制动时最大压钩力相差最大分别约4.3%、6.1%。
In order to explore the influence of piston stroke of brake cylinder on the longitudinal dynamic performance of train, this paper adopts the joint simulation system of train air braking and longitudinal dynamics to study the influence of piston stroke of brake cylinder on the dynamic performance of 20,000t heavy duty train, such as braking capacity and longitudinal force. The results show that the larger the piston stroke of the brake cylinder is, the weaker the braking capacity of the train is. The greater the amount of air decompression, the less the influence of piston stroke on the braking capacity of train. When the piston stroke increases from 145 mm to 190 mm, the maximum braking distance difference under decompression 50 kPa is about 48.3%, and the maximum braking distance difference under emergency braking is about 4.9%. From the point of view of coupler force, under the same air brake decompression amount, the greater the piston stroke of brake cylinder, the smaller the maximum hook force produced by the train; With the increase of pressure reduction, the influence of piston stroke on the maximum hook force decreases. The maximum difference of hook force under decompression of 50 kPa is about 34.8%, while the maximum difference of hook force under common full braking and emergency braking is about 4.3% and 6.1%, respectively.

References

[1]  Ansari, M., Esmailzadeh, E. and Younesian, D. (2009) Longitudinal Dynamics of Freight Trains. International Journal of Heavy Vehicle Systems, 16, 102-131.
https://doi.org/10.1504/IJHVS.2009.023857
[2]  Aboubakr, A.K, Volpi, M., Shabana, A.A., Cheli, F. and Melzi, S. (2016) Implementation of Electronically Controlled Pneumatic Brake Formulation in Longitudinal Train Dynamics Algorithms. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-Body Dynamics, 230, 505-526.
https://doi.org/10.1177/1464419316628764
[3]  Cole, C., Spiryagin, M., Wu, Q. and Sun, Y.Q. (2017) Modelling, Simulation and Applications of Longitudinal Train Dynamics. Vehicle System Dynamics, 55, 1498-1571.
https://doi.org/10.1080/00423114.2017.1330484
[4]  Uyulan, C. and Arslan, E. (2020) Simulation and Time-Frequency Analysis of the Longitudinal Train Dynamics Coupled with a Nonlinear Friction Draft Gear. Nonlinear Engineering, 9, 124-144.
https://doi.org/10.1515/nleng-2020-0003
[5]  Nicola, B., Matteo, M. and Nicolò, Z. (2021) Development and Validation of a New Code for Longitudinal Train Dynamics Simulation. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit 235, 286-299.
https://doi.org/10.1177/0954409720923497
[6]  魏伟, 胡杨. 列尾装置对重载列车纵向力的影响[J]. 交通运输工程学报, 2012, 12(5): 43-49, 63.
[7]  魏伟, 胡杨, 赵旭宝, 等. 列车管定压对列车制动性能影响仿真研究[J]. 铁道机车车辆, 2017, 37(2): 17-23.
[8]  魏伟, 赵连刚. 两万吨列车纵向动力学性能预测[J]. 大连交通大学学报, 2009, 30(2): 39-43.
[9]  魏伟, 李文辉. 列车空气制动系统数值仿真[J]. 铁道学报, 2003, 25(1): 38-42.
[10]  魏伟. 列车空气制动系统仿真的有效性[J]. 中国铁道科学, 2006, 27(5): 104-109.
[11]  魏伟. 两万吨组合列车制动特性[J]. 交通运输工程学报, 2007, 7(6): 12-16.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133