全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

大型质子交换膜燃料电池优化建模
Optimal Modeling of Large Proton Exchange Membrane Fuel Cells

DOI: 10.12677/MOS.2023.122097, PP. 1031-1040

Keywords: 质子交换膜燃料电池,优化建模,密封圈,气体扩散层,压力;Proton Exchange Membrane Fuel Cell, Optimization Modeling, Seal Ring, Gas Diffusion Layer, Force

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文研究质子交换膜燃料电池(Proton Exchange Membrane Fuel Cell, PEMFC)中的关键部件密封圈和气体扩散层(Gas Diffusion Layer, GDL)在制造时产生的尺寸公差对其受力影响。通过建立一种弹簧–阻尼模型用于仿真大型电堆的压紧过程。此模型相比于FEM (Finite Element Method)模型,极大提高了计算效率。传统FEM模型计算单片单电池所需的时间通常会超过20分钟,而当电堆层数增加时,计算时间会呈非线性增加,采用此模型计算100层电堆只需要8分钟。计算结果可以显示出每一层电池中的密封圈和GDL的受力大小,根据这些结果,可为电堆的夹紧力设计提供参考。结果表明,随着压缩比增大,密封圈和GDL的受力及力的标准差呈非线性增加,含有公差的部件与标准部件受力的值相差达到28%。
In this paper, we investigated the effect of dimensional tolerance on the force of key component seal ring and GDL (Gas Diffusion Layer) in PEMFC (proton exchange membrane fuel cell) when manufac-tured. A spring-damping model was developed to simulate the compression process of a large stack. Compared with FEM (Finite Element Method) model, this model greatly improved the calculation ef-ficiency. The traditional FEM model usually takes more than 20 minutes to compute a single cell, but the calculation time increases nonlinearly as the number of layers increases. It takes only 8 minutes to calculate 100 layers of stack using this model. The calculation results can show the force of the seal ring and GDL in each cell, according to these results, it can provide a reference for the de-sign of the clamping force of the stack. The results showed that the force and standard deviation of force of seal ring and GDL increased nonlinearly with the increase of compression ratio. The differ-ence of force between the tolerance component and the standard component is up to 28%.

References

[1]  Zhang, Y., He, S.R., Jiang, X.H., et al. (2022) 3D Multi-Phase Simulation of Metal Bipolar Plate Proton Exchange Membrane Fuel Cell Stack with Cooling Flow Field. Energy Conversion and Management, 273, Article ID: 116419.
https://doi.org/10.1016/j.enconman.2022.116419
[2]  Zhang, Y., He, S.R., Jiang, X.H., et al. (2022) Characteristics of Proton Exchange Membrane Fuel Cell Considering “Dot Matrix” Gas Distribution Zones and Waveform Staggered Flow Field with Cooling Channels. Energy Conversion and Management, 267, Article ID: 115881.
https://doi.org/10.1016/j.enconman.2022.115881
[3]  Zhang, Y., He, S.R., Jiang, X.H., et al. (2022) Performance Study on a Large-Scale Proton Exchange Membrane Fuel Cell with Cooling. International Journal of Hydrogen Energy, 47, 10381-10394.
https://doi.org/10.1016/j.ijhydene.2022.01.122
[4]  Lewandowska-Bernat, A. and Desideri, U. (2017) Opportunities of Power-to-Gas Technology. Energy Procedia, 105, 4569-4574.
https://doi.org/10.1016/j.egypro.2017.03.982
[5]  Ferrero, D., Gamba, M., Lanzini, A. and Santarelli, M. (2016) Power-to-Gas Hydrogen: Techno-Economic Assessment of Processes towards a Multi-Purpose Energy Carrier. Energy Procedia, 101, 50-57.
https://doi.org/10.1016/j.egypro.2016.11.007
[6]  Singdeo, D., Dey, T. and Ghosh, P.C. (2014) Contact Resistance be-tween Bipolar Plate and Gas Diffusion Layer in High Temperature Polymer Electrolyte Fuel Cells. International Journal of Hy-drogen Energy, 39, 987-995.
https://doi.org/10.1016/j.ijhydene.2013.10.147
[7]  Wu, Z., Zhou, Y., Lin, G., et al. (2008) An Improved Model for Pre-dicting Electrical Contact Resistance between Bipolar Plate and Gas Diffusion Layer in Proton Exchange Membrane Fuel Cells. Journal of Power Sources, 182, 265-269.
https://doi.org/10.1016/j.jpowsour.2008.03.044
[8]  El Oualid, S., Lachat, R., Candusso, D. and Meyer, Y. (2017) Characterization Process to Measure the Electrical Contact Resistance of Gas Diffusion Layers under Mechanical Static Compressive Loads. International Journal of Hydrogen Energy, 42, 23920-23931.
https://doi.org/10.1016/j.ijhydene.2017.03.130
[9]  Khazaee, I. (2013) Experimental Investigation of Irreversibility of a Proton Exchange Membrane Fuel Cell. Journal of Energy Resources Technology, 134, 24502-24505.
https://doi.org/10.1115/1.4006045
[10]  Movahedi, M., Ramiar, A. and Ranjber, A.A. (2016) 3D Numerical Investigation of Clamping Pressure Effect on the Performance of Proton Exchange Membrane Fuel Cell with Interdigitated Flow Field. Ener-gy, 142, 617-632.
https://doi.org/10.1016/j.energy.2017.10.020
[11]  Chen, C.Y. and Su, S.C. (2018) Effects of Assembly Torque on a Pro-ton Exchange Membrane Fuel Cell with Stamped Metallic Bipolar Plates. Energy, 159, 440-447.
https://doi.org/10.1016/j.energy.2018.06.168
[12]  Huang, K.J., Chen, C.Y., Hwang, S.J. and Lai, W.H. (2012) Effects of Compression Distribution on PEMFC Stacks Using Reformate as Fuel. Energy Procedia, 29, 234-243.
https://doi.org/10.1016/j.egypro.2012.09.029
[13]  Chung, T.T., Lin, C., Shiu, H.R., et al. (2010) Optimum Design of O-Ring Shapes for a PEM Fuel Cell Stack with Carbon Based Bipolar Plates. ASME 2010 8th International Fuel Cell Science, Engineering and Technology Conference, Volume 1, 573-579.
https://doi.org/10.1115/FuelCell2010-33166
[14]  Yang, D., Ma, J., Zhang, Q., et al. (2020) Accelerated Test of Silicone Rubbers Exposing to PEMFC Environment. Progress in Natural Science: Materials International, 30, 882-889.
https://doi.org/10.1016/j.pnsc.2020.10.008
[15]  Lee, D., Lim, J.W., Nam, S., et al. (2015) Gasket-Integrated Carbon/Silicone Elastomer Composite Bipolar Plate for High-Temperature PEMFC. Compo-site Structures, 128, 284-290.
https://doi.org/10.1016/j.compstruct.2015.03.063
[16]  Huang, X.M., Liu, S., Yu, X.L. and Zhang, Y.J. (2022) A Mechanism Leakage Model of Metal-Bipolar-Plate PEMFC Seal Structures with Stress Relaxation Effects. International Journal of Hydrogen Energy, 47, 2594-2607.
https://doi.org/10.1016/j.ijhydene.2021.10.161
[17]  Zhang, J. and Hu, Y. (2020) Sealing Performance and Mechanical Behavior of PEMFCs Sealing System Based on Thermodynamic Coupling. International Journal of Hydrogen Energy, 45, 23480-23489.
https://doi.org/10.1016/j.ijhydene.2020.06.167
[18]  Qiu, D.K., Liang, P., Peng, L.F., et al. (2020) Material Behavior of Rubber Sealing for Proton Exchange Membrane Fuel Cells. International Journal of Hydrogen Energy, 45, 5465-5673.
https://doi.org/10.1016/j.ijhydene.2019.07.232
[19]  Lin, P., Zhou, P. and Wu, C.W. (2009) A High Efficient Assembly Technique for Large PEMFC Stacks Part I. Theory. Journal of Power Sources, 194, 381-390.
https://doi.org/10.1016/j.jpowsour.2009.04.068
[20]  Lin, P., Zhou, P. and Wu, C.W. (2010) A High Efficient Assembly Technique for Large Proton Exchange Membrane Fuel Cell Stacks: Part II. Applications. Journal of Power Sources, 195, 1383-1392.
https://doi.org/10.1016/j.jpowsour.2009.09.038

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133