|
基于柔性仿生关节的康复外骨骼机械手设计及运动性能分析
|
Abstract:
为解决传统康复外骨骼机械手的手指关节旋转中心不一致的缺点,设计了一种基于柔性仿生关节的康复外骨骼机械手。基于欧拉伯努利梁理论及伪刚体模型,使用有限元仿真分析研究外凸圆弧形柔性铰链的刚度特性方程,提出柔性仿生关节的设计方法。对手部外骨骼进行结构设计并进行样机制作,通过实验验证其运动性能。该外骨骼机械手手指最大弯曲角度可达115°,在该角度下的指尖力可基本保持在2.7 N左右。实验结果表明,该外骨骼可以实现手指关节活动度被动训练,并可辅助抓握物品。本研究利用了柔性仿生关节解决了传统外骨骼机械手关节旋转中心不一致的问题,可用于手功能障碍患者的康复训练和日常生活辅助。
In order to solve the problem of inconsistent rotation center of finger joint of traditional rehabilita-tion exoskeleton manipulator, a rehabilitation exoskeleton manipulator based on flexible bionic joint was designed. Based on the Euler Bernoulli beam theory and the pseudo-rigid body model, the stiffness characteristic equation of the convex arc flexible hinge is studied by finite element simula-tion, and the design method of the flexible bionic joint is proposed. The exoskeleton of the hand is designed and made into a prototype, and its motion performance is verified by experiments. The maximum bending angle of the exoskeleton manipulator finger can reach 115°, and the fingertip force at this angle can be basically maintained at about 2.7 N. The experimental results show that the exoskeleton can achieve passive training of finger joint mobility and assist in grasping objects. This study uses flexible bionic joints to solve the problem of inconsistent rotation center of tradi-tional hand exoskeleton joints, which can be used for rehabilitation training and daily life assistance for patients with hand dysfunction.
[1] | 林佳丽, 贾杰. 脑卒中后感觉训练在上肢及手功能康复中的研究进展[J]. 中国康复医学杂志, 2020, 35(4): 488-492. |
[2] | 姚安艳, 严璐. 脑卒中后运动功能障碍患者的康复训练研究进展[J]. 贵州中医药大学学报, 2022, 44(3): 91-95. |
[3] | 黄锦文, 梁国辉. 手外科康复治疗技术[M]. 北京: 中国社会出版社, 2010. |
[4] | 钟思灵, 于随然. 手部功能康复外骨骼的结构设计与分析[J]. 机械设计与研究, 2020, 36(3): 12-18. |
[5] | 厉朝, 赵彦峻, 乔学昱, 刘文龙, 贾丙琪. 欠驱动康复外骨骼手的设计及试验[J]. 机械传动, 2019, 43(9): 154-158. |
[6] | Chauhan, R.J. and Ben-Tzvi, P. (2019) A Series Elastic Ac-tuator Design and Control in a Linkage Based Hand Exoskeleton. Proceedings of ASME Dynamic Systems and Control Con-ference, Park City, Utah, USA, 8-11 October 2019.
https://doi.org/10.1115/DSCC2019-8996 |
[7] | Prange, G.B., Smulders, L.C., Van Wijngaarden, J., et al. (2015) User Re-quirements for Assistance of the Supporting Hand in Bimanual Daily Activities via a Robotic Glove for Severely Affected Stroke Patients. Proceedings of 2015 IEEE International Conference on Rehabilitation Robotics (ICORR), Singapore, 11-14 August 2015, 357-361.
https://doi.org/10.1109/ICORR.2015.7281225 |
[8] | Rus, D. and Tolley, M.T. (2015) Design, Fabrication and Control of Soft Robots. Nature, 521, 467-475.
https://doi.org/10.1038/nature14543 |
[9] | Polygerinos, P., Lyne, S., Wang, Z., et al. (2013) Towards a Soft Pneumatic Glove for Hand Rehabilitation. Proceedings of 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan, 3-7 November 2013, 1512-1517. https://doi.org/10.1109/IROS.2013.6696549 |
[10] | Park, S., Weber, L., Bishop, L., et al. (2018) Design and Development of Effective Transmission Mechanisms on a Tendon Driven Hand Orthosis for Stroke Patients. Proceedings of 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, QLD, Australia, 21-25 May 2018, 2281-2287.
https://doi.org/10.1109/ICRA.2018.8461069 |
[11] | Hadi, A., Alipour, K., Kazeminasab, S., et al. (2017) ASR Glove: A Wearable Glove for Hand Assistance and Rehabilitation Using Shape Memory Alloy. Journal of Intelligent Material Systems and Structures, 29, 1575-1585.
https://doi.org/10.1177/1045389X17742729 |
[12] | 陈应舒, 朱淳逸. 曲梁柔性铰链性能分析及应用机构设计[J]. 机械设计与制造, 2018(11): 183-185+189. |
[13] | Howell, L.L. (2001) Compliant Mechanism. John Wiley & Sons Limited, New York. |
[14] | 龙永成, 葛文杰, 张永红, 景藜. 外凸圆弧柔性铰链的计算与分析[J]. 机械设计, 2011, 28(1): 70-72. |